📄 mtxlib.cpp
字号:
col[0] -= m[0];
col[1] -= m[1];
col[2] -= m[2];
col[3] -= m[3];
return *this;
}
// Multiply the matrix44 by another matrix44
matrix44 &matrix44::operator *= (const matrix44 &m)
{
matrix44 t;
for (unsigned int r = 0; r < 4; r++)
{
for (unsigned int c = 0; c < 4; c++)
{
float f = 0;
f += col[0][r] * m[c][0];
f += col[1][r] * m[c][1];
f += col[2][r] * m[c][2];
f += col[3][r] * m[c][3];
t[c][r] = f;
}
}
*this = t;
return *this;
}
// Multiply the matrix44 by a float
matrix44 &matrix44::operator *= (float f)
{
col[0] *= f;
col[1] *= f;
col[2] *= f;
col[3] *= f;
return *this;
}
// Are these two matrix44's equal?
bool operator == (const matrix44 &a, const matrix44 &b)
{
return ((a[0] == b[0]) && (a[1] == b[1]) &&
(a[2] == b[2]) && (a[3] == b[3]));
}
// Are these two matrix44's not equal?
bool operator != (const matrix44 &a, const matrix44 &b)
{
return ((a[0] != b[0]) || (a[1] != b[1]) ||
(a[2] != b[2]) || (a[3] != b[3]));
}
// Add two matrix44's
matrix44 operator + (const matrix44 &a, const matrix44 &b)
{
matrix44 ret(a);
ret += b;
return ret;
}
// Subtract one matrix44 from another
matrix44 operator - (const matrix44 &a, const matrix44 &b)
{
matrix44 ret(a);
ret -= b;
return ret;
}
// Multiply matrix44 by another matrix44
matrix44 operator * (const matrix44 &a, const matrix44 &b)
{
matrix44 ret(a);
ret *= b;
return ret;
}
// Multiply a vector3 by this matrix44
vector3 operator * (const matrix44 &m, const vector3 &v)
{
vector4 ret(v);
ret = m * ret;
return vector3(ret.x, ret.y, ret.z);
}
// Multiply a vector3 by this matrix44
vector3 operator * (const vector3 &v, const matrix44 &m)
{
vector4 ret(v);
ret = ret * m;
return vector3(ret.x, ret.y, ret.z);
}
// Multiply a vector4 by this matrix44
vector4 operator * (const matrix44 &m, const vector4 &v)
{
vector4 ret;
ret.x = v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + v.w * m[3][0];
ret.y = v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + v.w * m[3][1];
ret.z = v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + v.w * m[3][2];
ret.w = v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + v.w * m[3][3];
return ret;
}
// Multiply a vector4 by this matrix44
vector4 operator * (const vector4 &v, const matrix44 &m)
{
vector4 ret;
ret.x = DotProduct(m[0], v);
ret.y = DotProduct(m[1], v);
ret.z = DotProduct(m[2], v);
ret.w = DotProduct(m[3], v);
return ret;
}
// Multiply matrix44 by a float
matrix44 operator * (float f, const matrix44 &m)
{
matrix44 ret(m);
ret *= f;
return ret;
}
// Set matrix44 to the identity matrix
matrix44 &matrix44::identity()
{
for (unsigned int c = 0; c < 4; c++)
{
for (unsigned int r = 0; r < 4; r++)
{
if (c == r)
col[c][r] = 1.0F;
else
col[c][r] = 0.0F;
}
}
return *this;
}
// Transpose the matrix44
matrix44 &matrix44::transpose()
{
float t;
for (unsigned int c = 0; c < 4; c++)
{
for (unsigned int r = c + 1; r < 4; r++)
{
t = col[c][r];
col[c][r] = col[r][c];
col[r][c] = t;
}
}
return *this;
}
// Invert the matrix44
matrix44 &matrix44::invert()
{
matrix44 a(*this);
matrix44 b(IdentityMatrix44());
unsigned int r, c;
unsigned int cc;
unsigned int rowMax; // Points to max abs value row in this column
unsigned int row;
float tmp;
// Go through columns
for (c=0; c<4; c++)
{
// Find the row with max value in this column
rowMax = c;
for (r=c+1; r<4; r++)
{
if (fabs(a[c][r]) > fabs(a[c][rowMax]))
{
rowMax = r;
}
}
// If the max value here is 0, we can't invert. Return identity.
if (a[rowMax][c] == 0.0F)
return (identity());
// Swap row "rowMax" with row "c"
for (cc=0; cc<4; cc++)
{
tmp = a[cc][c];
a[cc][c] = a[cc][rowMax];
a[cc][rowMax] = tmp;
tmp = b[cc][c];
b[cc][c] = b[cc][rowMax];
b[cc][rowMax] = tmp;
}
// Now everything we do is on row "c".
// Set the max cell to 1 by dividing the entire row by that value
tmp = a[c][c];
for (cc=0; cc<4; cc++)
{
a[cc][c] /= tmp;
b[cc][c] /= tmp;
}
// Now do the other rows, so that this column only has a 1 and 0's
for (row = 0; row < 4; row++)
{
if (row != c)
{
tmp = a[c][row];
for (cc=0; cc<4; cc++)
{
a[cc][row] -= a[cc][c] * tmp;
b[cc][row] -= b[cc][c] * tmp;
}
}
}
}
*this = b;
return *this;
}
// Return a matrix44 set to the identity matrix
matrix44 IdentityMatrix44()
{
matrix44 ret;
return ret.identity();
}
// Return the transpose of the matrix44
matrix44 TransposeMatrix44(const matrix44 &m)
{
matrix44 ret(m);
return ret.transpose();
}
// Return the inverted matrix44
matrix44 InvertMatrix44(const matrix44 &m)
{
matrix44 ret(m);
return ret.invert();
}
// Return a 3D axis-rotation matrix44
// Pass in 'x', 'y', or 'z' for the axis.
matrix44 RotateRadMatrix44(char axis, float rad)
{
matrix44 ret;
float sinA, cosA;
sinA = (float)sin(rad);
cosA = (float)cos(rad);
switch(axis)
{
case 'x':
case 'X':
ret[0][0] = 1.0F; ret[1][0] = 0.0F; ret[2][0] = 0.0F;
ret[0][1] = 0.0F; ret[1][1] = cosA; ret[2][1] = -sinA;
ret[0][2] = 0.0F; ret[1][2] = sinA; ret[2][2] = cosA;
break;
case 'y':
case 'Y':
ret[0][0] = cosA; ret[1][0] = 0.0F; ret[2][0] = sinA;
ret[0][1] = 0.0F; ret[1][1] = 1.0F; ret[2][1] = 0.0F;
ret[0][2] = -sinA; ret[1][2] = 0.0F; ret[2][2] = cosA;
break;
case 'z':
case 'Z':
ret[0][0] = cosA; ret[1][0] = -sinA; ret[2][0] = 0.0F;
ret[0][1] = sinA; ret[1][1] = cosA; ret[2][1] = 0.0F;
ret[0][2] = 0.0F; ret[1][2] = 0.0F; ret[2][2] = 1.0F;
break;
}
ret[0][3] = 0.0F; ret[1][3] = 0.0F; ret[2][3] = 0.0F;
ret[3][0] = 0.0F;
ret[3][1] = 0.0F;
ret[3][2] = 0.0F;
ret[3][3] = 1.0F;
return ret;
}
// Return a 3D axis-rotation matrix44
// Pass in an arbitrary vector3 axis.
matrix44 RotateRadMatrix44(const vector3 &axis, float rad)
{
matrix44 ret;
float sinA, cosA;
float invCosA;
vector3 nrm = axis;
float x, y, z;
float xSq, ySq, zSq;
nrm.normalize();
sinA = (float)sin(rad);
cosA = (float)cos(rad);
invCosA = 1.0F - cosA;
x = nrm.x;
y = nrm.y;
z = nrm.z;
xSq = x * x;
ySq = y * y;
zSq = z * z;
ret[0][0] = (invCosA * xSq) + (cosA);
ret[1][0] = (invCosA * x * y) - (sinA * z );
ret[2][0] = (invCosA * x * z) + (sinA * y );
ret[3][0] = 0.0F;
ret[0][1] = (invCosA * x * y) + (sinA * z);
ret[1][1] = (invCosA * ySq) + (cosA);
ret[2][1] = (invCosA * y * z) - (sinA * x);
ret[3][1] = 0.0F;
ret[0][2] = (invCosA * x * z) - (sinA * y);
ret[1][2] = (invCosA * y * z) + (sinA * x);
ret[2][2] = (invCosA * zSq) + (cosA);
ret[3][2] = 0.0F;
ret[0][3] = 0.0F;
ret[1][3] = 0.0F;
ret[2][3] = 0.0F;
ret[3][3] = 1.0F;
return ret;
}
// Return a 3D translation matrix44
matrix44 TranslateMatrix44(float x, float y, float z)
{
matrix44 ret;
ret.identity();
ret[3][0] = x;
ret[3][1] = y;
ret[3][2] = z;
return ret;
}
// Return a 3D/4D scale matrix44
matrix44 ScaleMatrix44(float x, float y, float z, float w)
{
matrix44 ret;
ret.identity();
ret[0][0] = x;
ret[1][1] = y;
ret[2][2] = z;
ret[3][3] = w;
return ret;
}
// Return a "lookat" matrix44 given the current camera position (vector3),
// camera-up vector3, and camera-target vector3.
matrix44 LookAtMatrix44(const vector3 &camPos, const vector3 &camUp,
const vector3 &target )
{
matrix44 rot;
matrix44 tran;
vector3 look = (camPos - target);
look.normalize();
vector3 right = CrossProduct(camUp, look);
right.normalize();
vector3 up = CrossProduct(look, right);
up.normalize();
rot[0][0] = right.x;
rot[1][0] = right.y;
rot[2][0] = right.z;
rot[3][0] = 0.0;
rot[0][1] = up.x;
rot[1][1] = up.y;
rot[2][1] = up.z;
rot[3][1] = 0.0;
rot[0][2] = look.x;
rot[1][2] = look.y;
rot[2][2] = look.z;
rot[3][2] = 0.0;
rot[0][3] = 0.0F;
rot[1][3] = 0.0F;
rot[2][3] = 0.0F;
rot[3][3] = 1.0F;
tran = TranslateMatrix44(-camPos.x, -camPos.y, -camPos.z);
return (rot * tran);
}
// Return a frustum matrix44 given the left, right, bottom, top,
// near, and far values for the frustum boundaries.
matrix44 FrustumMatrix44(float l, float r,
float b, float t, float n, float f)
{
matrix44 ret;
float width = r-l;
float height = t-b;
float depth = f-n;
ret[0][0] = (2*n) / width;
ret[0][1] = 0.0F;
ret[0][2] = 0.0F;
ret[0][3] = 0.0F;
ret[1][0] = 0.0F;
ret[1][1] = (2*n) / height;
ret[1][2] = 0.0F;
ret[1][3] = 0.0F;
ret[2][0] = (r + l) / width;
ret[2][1] = (t + b) / height;
ret[2][2] = -(f + n) / depth;
ret[2][3] = -1.0F;
ret[3][0] = 0.0F;
ret[3][1] = 0.0F;
ret[3][2] = -(2*f*n) / depth;
ret[3][3] = 0.0F;
return ret;
}
// Return a perspective matrix44 given the field-of-view in the Y
// direction in degrees, the aspect ratio of Y/X, and near and
// far plane distances.
matrix44 PerspectiveMatrix44(float fovY, float aspect, float n, float f)
{
matrix44 ret;
float angle;
float cot;
angle = fovY / 2.0F;
angle = DegToRad( angle );
cot = (float) cos(angle) / (float) sin(angle);
ret[0][0] = cot / aspect;
ret[0][1] = 0.0F;
ret[0][2] = 0.0F;
ret[0][3] = 0.0F;
ret[1][0] = 0.0F;
ret[1][1] = cot;
ret[1][2] = 0.0F;
ret[1][3] = 0.0F;
ret[2][0] = 0.0F;
ret[2][1] = 0.0F;
ret[2][2] = -(f + n) / (f - n);
ret[2][3] = -1.0F;
ret[3][0] = 0.0F;
ret[3][1] = 0.0F;
ret[3][2] = -(2*f*n) / (f - n);
ret[3][3] = 0.0F;
return ret;
}
// Return an orthographic matrix44 given the left, right, bottom, top,
// near, and far values for the frustum boundaries.
matrix44 OrthoMatrix44(float l, float r,
float b, float t, float n, float f)
{
matrix44 ret;
float width = r-l;
float height = t-b;
float depth = f-n;
ret[0][0] = 2.0F / width;
ret[0][1] = 0.0F;
ret[0][2] = 0.0F;
ret[0][3] = 0.0F;
ret[1][0] = 0.0F;
ret[1][1] = 2.0F / height;
ret[1][2] = 0.0F;
ret[1][3] = 0.0F;
ret[2][0] = 0.0F;
ret[2][1] = 0.0F;
ret[2][2] = -(2.0F) / depth;
ret[2][3] = 0.0F;
ret[3][0] = -(r + l) / width;
ret[1][3] = -(t + b) / height;
ret[3][2] = -(f + n) / depth;
ret[3][3] = 1.0F;
return ret;
}
// Return an orientation matrix using 3 basis normalized vectors
matrix44 OrthoNormalMatrix44(const vector3 &xdir,
const vector3 &ydir, const vector3 &zdir)
{
matrix44 ret;
ret[0] = (vector4)xdir;
ret[1] = (vector4)ydir;
ret[2] = (vector4)zdir;
ret[3][3] = 1.0F;
return ret;
}
////////////////////////////////////////////////////////////
// Debug functions
//
// Print a vector2 to a file
void vector2::fprint(FILE* file, char* str) const
{
fprintf(file, "%svector2: <%f, %f>\n", str, x, y);
}
// Print a vector3 to a file
void vector3::fprint(FILE* file, char* str) const
{
fprintf(file, "%svector3: <%f, %f, %f>\n", str, x, y, z);
}
// Print a vector4 to a file
void vector4::fprint(FILE* file, char* str) const
{
fprintf(file, "%svector4: <%f, %f, %f, %f>\n", str, x, y, z, w);
}
// Print a matrix33 to a file
void matrix33::fprint(FILE* file, char * str) const
{
fprintf(file, "%smatrix33:\n", str);
vector3 row0(col[0][0], col[1][0], col[2][0]);
row0.fprint(file, "\t");
vector3 row1(col[0][1], col[1][1], col[2][1]);
row1.fprint(file, "\t");
vector3 row2(col[0][2], col[1][2], col[2][2]);
row2.fprint(file, "\t");
}
// Print a matrix44 to a file
void matrix44::fprint(FILE* file, char* str) const
{
fprintf(file, "%smatrix44:\n", str);
vector4 row0(col[0][0], col[1][0], col[2][0], col[3][0]);
row0.fprint(file, "\t");
vector4 row1(col[0][1], col[1][1], col[2][1], col[3][1]);
row1.fprint(file, "\t");
vector4 row2(col[0][2], col[1][2], col[2][2], col[3][2]);
row2.fprint(file, "\t");
vector4 row3(col[0][3], col[1][3], col[2][3], col[3][3]);
row3.fprint(file, "\t");
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -