⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 imdct.c

📁 Trolltech公司发布的图形界面操作系统。可在qt-embedded-2.3.7平台上编译为嵌入式图形界面操作系统。
💻 C
字号:
/* * imdct.c * Copyright (C) 2000-2002 Michel Lespinasse <walken@zoy.org> * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca> * * The ifft algorithms in this file have been largely inspired by Dan * Bernstein's work, djbfft, available at http://cr.yp.to/djbfft.html * * This file is part of a52dec, a free ATSC A-52 stream decoder. * See http://liba52.sourceforge.net/ for updates. * * a52dec is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * a52dec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */#include "a52.h"#include "a52_internal.h"#include "mm_accel.h"typedef struct complex_s {    sample_t real;    sample_t imag;} complex_t;static complex_t buf[128];static uint8_t fftorder[] = {      0,128, 64,192, 32,160,224, 96, 16,144, 80,208,240,112, 48,176,      8,136, 72,200, 40,168,232,104,248,120, 56,184, 24,152,216, 88,      4,132, 68,196, 36,164,228,100, 20,148, 84,212,244,116, 52,180,    252,124, 60,188, 28,156,220, 92, 12,140, 76,204,236,108, 44,172,      2,130, 66,194, 34,162,226, 98, 18,146, 82,210,242,114, 50,178,     10,138, 74,202, 42,170,234,106,250,122, 58,186, 26,154,218, 90,    254,126, 62,190, 30,158,222, 94, 14,142, 78,206,238,110, 46,174,      6,134, 70,198, 38,166,230,102,246,118, 54,182, 22,150,214, 86};/* Root values for IFFT */static sample_t roots16[3];static sample_t roots32[7];static sample_t roots64[15];static sample_t roots128[31];/* Twiddle factors for IMDCT */static complex_t pre1[128];static complex_t post1[64];static complex_t pre2[64];static complex_t post2[32];static sample_t a52_imdct_window[256];static void (* ifft128) (complex_t * buf);static void (* ifft64) (complex_t * buf);static inline void ifft2 (complex_t * buf){    double r, i;    r = buf[0].real;    i = buf[0].imag;    buf[0].real += buf[1].real;    buf[0].imag += buf[1].imag;    buf[1].real = r - buf[1].real;    buf[1].imag = i - buf[1].imag;}static inline void ifft4 (complex_t * buf){    double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;    tmp1 = buf[0].real + buf[1].real;    tmp2 = buf[3].real + buf[2].real;    tmp3 = buf[0].imag + buf[1].imag;    tmp4 = buf[2].imag + buf[3].imag;    tmp5 = buf[0].real - buf[1].real;    tmp6 = buf[0].imag - buf[1].imag;    tmp7 = buf[2].imag - buf[3].imag;    tmp8 = buf[3].real - buf[2].real;    buf[0].real = tmp1 + tmp2;    buf[0].imag = tmp3 + tmp4;    buf[2].real = tmp1 - tmp2;    buf[2].imag = tmp3 - tmp4;    buf[1].real = tmp5 + tmp7;    buf[1].imag = tmp6 + tmp8;    buf[3].real = tmp5 - tmp7;    buf[3].imag = tmp6 - tmp8;}/* the basic split-radix ifft butterfly */#define BUTTERFLY(a0,a1,a2,a3,wr,wi) do {	\    tmp5 = a2.real * wr + a2.imag * wi;		\    tmp6 = a2.imag * wr - a2.real * wi;		\    tmp7 = a3.real * wr - a3.imag * wi;		\    tmp8 = a3.imag * wr + a3.real * wi;		\    tmp1 = tmp5 + tmp7;				\    tmp2 = tmp6 + tmp8;				\    tmp3 = tmp6 - tmp8;				\    tmp4 = tmp7 - tmp5;				\    a2.real = a0.real - tmp1;			\    a2.imag = a0.imag - tmp2;			\    a3.real = a1.real - tmp3;			\    a3.imag = a1.imag - tmp4;			\    a0.real += tmp1;				\    a0.imag += tmp2;				\    a1.real += tmp3;				\    a1.imag += tmp4;				\} while (0)/* split-radix ifft butterfly, specialized for wr=1 wi=0 */#define BUTTERFLY_ZERO(a0,a1,a2,a3) do {	\    tmp1 = a2.real + a3.real;			\    tmp2 = a2.imag + a3.imag;			\    tmp3 = a2.imag - a3.imag;			\    tmp4 = a3.real - a2.real;			\    a2.real = a0.real - tmp1;			\    a2.imag = a0.imag - tmp2;			\    a3.real = a1.real - tmp3;			\    a3.imag = a1.imag - tmp4;			\    a0.real += tmp1;				\    a0.imag += tmp2;				\    a1.real += tmp3;				\    a1.imag += tmp4;				\} while (0)/* split-radix ifft butterfly, specialized for wr=wi */#define BUTTERFLY_HALF(a0,a1,a2,a3,w) do {	\    tmp5 = (a2.real + a2.imag) * w;		\    tmp6 = (a2.imag - a2.real) * w;		\    tmp7 = (a3.real - a3.imag) * w;		\    tmp8 = (a3.imag + a3.real) * w;		\    tmp1 = tmp5 + tmp7;				\    tmp2 = tmp6 + tmp8;				\    tmp3 = tmp6 - tmp8;				\    tmp4 = tmp7 - tmp5;				\    a2.real = a0.real - tmp1;			\    a2.imag = a0.imag - tmp2;			\    a3.real = a1.real - tmp3;			\    a3.imag = a1.imag - tmp4;			\    a0.real += tmp1;				\    a0.imag += tmp2;				\    a1.real += tmp3;				\    a1.imag += tmp4;				\} while (0)static inline void ifft8 (complex_t * buf){    double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;    ifft4 (buf);    ifft2 (buf + 4);    ifft2 (buf + 6);    BUTTERFLY_ZERO (buf[0], buf[2], buf[4], buf[6]);    BUTTERFLY_HALF (buf[1], buf[3], buf[5], buf[7], roots16[1]);}static void ifft_pass (complex_t * buf, sample_t * weight, int n){    complex_t * buf1;    complex_t * buf2;    complex_t * buf3;    double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;    int i;    buf++;    buf1 = buf + n;    buf2 = buf + 2 * n;    buf3 = buf + 3 * n;    BUTTERFLY_ZERO (buf[-1], buf1[-1], buf2[-1], buf3[-1]);    i = n - 1;    do {	BUTTERFLY (buf[0], buf1[0], buf2[0], buf3[0], weight[n], weight[2*i]);	buf++;	buf1++;	buf2++;	buf3++;	weight++;    } while (--i);}static void ifft16 (complex_t * buf){    ifft8 (buf);    ifft4 (buf + 8);    ifft4 (buf + 12);    ifft_pass (buf, roots16 - 4, 4);}static void ifft32 (complex_t * buf){    ifft16 (buf);    ifft8 (buf + 16);    ifft8 (buf + 24);    ifft_pass (buf, roots32 - 8, 8);}static void ifft64_c (complex_t * buf){    ifft32 (buf);    ifft16 (buf + 32);    ifft16 (buf + 48);    ifft_pass (buf, roots64 - 16, 16);}static void ifft128_c (complex_t * buf){    ifft32 (buf);    ifft16 (buf + 32);    ifft16 (buf + 48);    ifft_pass (buf, roots64 - 16, 16);    ifft32 (buf + 64);    ifft32 (buf + 96);    ifft_pass (buf, roots128 - 32, 32);}void a52_imdct_512 (sample_t * data, sample_t * delay, sample_t bias){    int i, k;    sample_t t_r, t_i, a_r, a_i, b_r, b_i, w_1, w_2;    const sample_t * window = a52_imdct_window;	    for (i = 0; i < 128; i++) {	k = fftorder[i];	t_r = pre1[i].real;	t_i = pre1[i].imag;	buf[i].real = t_i * data[255-k] + t_r * data[k];	buf[i].imag = t_r * data[255-k] - t_i * data[k];    }    ifft128 (buf);    /* Post IFFT complex multiply plus IFFT complex conjugate*/    /* Window and convert to real valued signal */    for (i = 0; i < 64; i++) {	/* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */	t_r = post1[i].real;	t_i = post1[i].imag;	a_r = t_r * buf[i].real     + t_i * buf[i].imag;	a_i = t_i * buf[i].real     - t_r * buf[i].imag;	b_r = t_i * buf[127-i].real + t_r * buf[127-i].imag;	b_i = t_r * buf[127-i].real - t_i * buf[127-i].imag;	w_1 = window[2*i];	w_2 = window[255-2*i];	data[2*i]     = delay[2*i] * w_2 - a_r * w_1 + bias;	data[255-2*i] = delay[2*i] * w_1 + a_r * w_2 + bias;	delay[2*i] = a_i;	w_1 = window[2*i+1];	w_2 = window[254-2*i];	data[2*i+1]   = delay[2*i+1] * w_2 + b_r * w_1 + bias;	data[254-2*i] = delay[2*i+1] * w_1 - b_r * w_2 + bias;	delay[2*i+1] = b_i;    }}void a52_imdct_256(sample_t data[],sample_t delay[],sample_t bias){    int i, k;    sample_t t_r, t_i, a_r, a_i, b_r, b_i, c_r, c_i, d_r, d_i, w_1, w_2;    complex_t * buf1, * buf2;    const sample_t * window = a52_imdct_window;    buf1 = &buf[0];    buf2 = &buf[64];    /* Pre IFFT complex multiply plus IFFT cmplx conjugate */    for (i = 0; i < 64; i++) {	k = fftorder[i];	t_r = pre2[i].real;	t_i = pre2[i].imag;	buf1[i].real = t_i * data[254-k] + t_r * data[k];	buf1[i].imag = t_r * data[254-k] - t_i * data[k];	buf2[i].real = t_i * data[255-k] + t_r * data[k+1];	buf2[i].imag = t_r * data[255-k] - t_i * data[k+1];    }    ifft64 (buf1);    ifft64 (buf2);    /* Post IFFT complex multiply */    /* Window and convert to real valued signal */    for (i = 0; i < 32; i++) {	/* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */ 	t_r = post2[i].real;	t_i = post2[i].imag;	a_r = t_r * buf1[i].real    + t_i * buf1[i].imag;	a_i = t_i * buf1[i].real    - t_r * buf1[i].imag;	b_r = t_i * buf1[63-i].real + t_r * buf1[63-i].imag;	b_i = t_r * buf1[63-i].real - t_i * buf1[63-i].imag;	c_r = t_r * buf2[i].real    + t_i * buf2[i].imag;	c_i = t_i * buf2[i].real    - t_r * buf2[i].imag;	d_r = t_i * buf2[63-i].real + t_r * buf2[63-i].imag;	d_i = t_r * buf2[63-i].real - t_i * buf2[63-i].imag;	w_1 = window[2*i];	w_2 = window[255-2*i];	data[2*i]     = delay[2*i] * w_2 - a_r * w_1 + bias;	data[255-2*i] = delay[2*i] * w_1 + a_r * w_2 + bias;	delay[2*i] = c_i;	w_1 = window[128+2*i];	w_2 = window[127-2*i];	data[128+2*i] = delay[127-2*i] * w_2 + a_i * w_1 + bias;	data[127-2*i] = delay[127-2*i] * w_1 - a_i * w_2 + bias;	delay[127-2*i] = c_r;	w_1 = window[2*i+1];	w_2 = window[254-2*i];	data[2*i+1]   = delay[2*i+1] * w_2 - b_i * w_1 + bias;	data[254-2*i] = delay[2*i+1] * w_1 + b_i * w_2 + bias;	delay[2*i+1] = d_r;	w_1 = window[129+2*i];	w_2 = window[126-2*i];	data[129+2*i] = delay[126-2*i] * w_2 + b_r * w_1 + bias;	data[126-2*i] = delay[126-2*i] * w_1 - b_r * w_2 + bias;	delay[126-2*i] = d_i;    }}static double besselI0 (double x){    double bessel = 1;    int i = 100;    do	bessel = bessel * x / (i * i) + 1;    while (--i);    return bessel;}void a52_imdct_init (uint32_t mm_accel){    int i, k;    double sum;    /* compute imdct window - kaiser-bessel derived window, alpha = 5.0 */    sum = 0;    for (i = 0; i < 256; i++) {	sum += besselI0 (i * (256 - i) * (5 * M_PI / 256) * (5 * M_PI / 256));	a52_imdct_window[i] = sum;    }    sum++;    for (i = 0; i < 256; i++)	a52_imdct_window[i] = sqrt (a52_imdct_window[i] / sum);    for (i = 0; i < 3; i++)	roots16[i] = cos ((M_PI / 8) * (i + 1));    for (i = 0; i < 7; i++)	roots32[i] = cos ((M_PI / 16) * (i + 1));    for (i = 0; i < 15; i++)	roots64[i] = cos ((M_PI / 32) * (i + 1));    for (i = 0; i < 31; i++)	roots128[i] = cos ((M_PI / 64) * (i + 1));    for (i = 0; i < 64; i++) {	k = fftorder[i] / 2 + 64;	pre1[i].real = cos ((M_PI / 256) * (k - 0.25));	pre1[i].imag = sin ((M_PI / 256) * (k - 0.25));    }    for (i = 64; i < 128; i++) {	k = fftorder[i] / 2 + 64;	pre1[i].real = -cos ((M_PI / 256) * (k - 0.25));	pre1[i].imag = -sin ((M_PI / 256) * (k - 0.25));    }    for (i = 0; i < 64; i++) {	post1[i].real = cos ((M_PI / 256) * (i + 0.5));	post1[i].imag = sin ((M_PI / 256) * (i + 0.5));    }    for (i = 0; i < 64; i++) {	k = fftorder[i] / 4;	pre2[i].real = cos ((M_PI / 128) * (k - 0.25));	pre2[i].imag = sin ((M_PI / 128) * (k - 0.25));    }    for (i = 0; i < 32; i++) {	post2[i].real = cos ((M_PI / 128) * (i + 0.5));	post2[i].imag = sin ((M_PI / 128) * (i + 0.5));    }#ifdef LIBA52_DJBFFT    if (mm_accel & MM_ACCEL_DJBFFT) {	fprintf (stderr, "Using djbfft for IMDCT transform\n");	ifft128 = (void (*) (complex_t *)) fftc4_un128;	ifft64 = (void (*) (complex_t *)) fftc4_un64;    } else#endif    {	fprintf (stderr, "No accelerated IMDCT transform found\n");	ifft128 = ifft128_c;	ifft64 = ifft64_c;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -