⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 expm1.c

📁 操作系统SunOS 4.1.3版本的源码
💻 C
字号:
#ifndef lintstatic	char sccsid[] = "@(#)expm1.c 1.1 92/07/30 SMI";#endif/* * Copyright (c) 1987 by Sun Microsystems, Inc. *//* EXPM1(X) * RETURN  EXP(X) - 1 * IEEE DOUBLE PRECISION  * CODE BASED ON 4.3BSD, MODIFIED by K.C. NG, 6/29/87.  * * Required system supported functions: *	scalbn(x,n)	 *	copysign(x,y)	 *	finite(x) * * Method: *	1. Argument Reduction: given the input x, find r and integer k such  *	   that *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .   *	   r will be represented as r := z+c for better accuracy. * *	2. Compute EXPM1(r)=exp(r)-1 by  * *			EXPM1(r=z+c) := z + exp__E(z,c) * *	3. EXPM1(x) =  2^k * ( EXPM1(r) + 1-2^-k ). * * 	Remarks:  *	   1. When k=1 and z < -0.25, we use the following formula for *	      better accuracy: *			EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) ) *	   2. To avoid rounding error in 1-2^-k where k is large, we use *			EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 } *	      when k>56.  * * Special cases: *	EXPM1(INF) is INF, EXPM1(NaN) is NaN; *	EXPM1(-INF)= -1; *	for finite argument, only EXPM1(0)=0 is exact. * * Accuracy: *	EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with *	1,166,000 random arguments on a VAX, the maximum observed error was *	.872 ulps (units of the last place). * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */#include <math.h>#include "libm.h"double expm1(x)double x;{	double static one=1.0, half=1.0/2.0; 	double scalbn(),copysign(),exp__E(),z,hi,lo,c;	int k,finite();#ifdef VAX	static prec=56;#else	/* IEEE double */	static prec=53;#endif	if(!finite(x)) {if(x!=x||x>0.0) return x+x; else return -1.0;}	if(signbit(x)) {	    if (x > -0.346573590279972643113) {  /* |x| < (ln2)/2 ? */		if(x > -1e-17) {		    dummy(x+fmax);	/* inexact unless x=0 */		    return x;		} else return x+exp__E(x,0.0);	    } else if ( x > -0.693147180559945286227) {		hi = x + ln2hi;		z  = hi + ln2lo;		c  = (hi-z)+ln2lo;		return 0.5*(z+exp__E(z,c))-0.5;	    } else if ( x > -40.0) return exp(x)-1.0;	    else { dummy(1e-300+x); return fmin-1.0;}	} else {	    if (x < 0.346573590279972643113) {  /* x < (ln2)/2 ? */		if(x < 1e-17) {		    dummy(x-fmax);	/* inexact unless x=0 */		    return x;		} else return x+exp__E(x,0.0);	    } else if ( x < 1.03972077083991792934) {		hi = x - ln2hi;		z  = hi - ln2lo;		c  = (hi-z)-ln2lo;		if (x < 0.443147180559945286227) {		    x  = z+0.5; x += exp__E(z,c); 		} else {		    z += exp__E(z,c); x = 0.5 + z;		}		return x+x;	    } else if ( x < 70.0) {		k= invln2 *x+copysign(0.5,x);	/* k=NINT(x/ln2) */		hi=x-k*ln2hi ; 		z=hi-(lo=k*ln2lo);		c=(hi-z)-lo;		if(k<=prec) { x=one-scalbn(one,-k); z += exp__E(z,c);}		else { x = exp__E(z,c)-scalbn(one,-k); x+=z; z=one;}		return scalbn(x+z,k);	    } else if (x <= lnovft) return exp(x)-1.0;	    else return exp(x);	}}/* exp__E(x,c) * ASSUMPTION: c << x  SO THAT  fl(x+c)=x. * (c is the correction term for x) * exp__E RETURNS * *			 /  exp(x+c) - 1 - x ,  1E-19 < |x| < .3465736 *       exp__E(x,c) = 	| 		      *			 \  0 ,  |x| < 1E-19. * * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS) * KERNEL FUNCTION OF EXP, EXPM1, POW FUNCTIONS * CODED IN C BY K.C. NG, 1/31/85; * REVISED BY K.C. NG on 3/16/85, 4/16/85. * * Required system supported function: *	copysign(x,y)	 * * Method: *	1. Rational approximation. Let r=x+c. *	   Based on *                                   2 * sinh(r/2)      *                exp(r) - 1 =   ----------------------   , *                               cosh(r/2) - sinh(r/2) *	   exp__E(r) is computed using *                   x*x            (x/2)*W - ( Q - ( 2*P  + x*P ) ) *                   --- + (c + x*[---------------------------------- + c ]) *                    2                          1 - W * 	   where  P := p1*x^2 + p2*x^4, *	          Q := q1*x^2 + q2*x^4 (for 56 bits precision, add q3*x^6) *	          W := x/2-(Q-x*P), * *	   (See the listing below for the values of p1,p2,q1,q2,q3. The poly- *	    nomials P and Q may be regarded as the approximations to sinh *	    and cosh : *		sinh(r/2) =  r/2 + r * P  ,  cosh(r/2) =  1 + Q . ) * *         The coefficients were obtained by a special Remez algorithm. * * Approximation error: * *   |	exp(x) - 1			   |        2**(-57),  (IEEE double) *   | ------------  -  (exp__E(x,0)+x)/x  |  <=  *   |	     x			           |	    2**(-69).  (VAX D) * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */#ifdef VAX	/* VAX D format *//* static double *//* p1     =  1.5150724356786683059E-2    , Hex  2^ -6   *  .F83ABE67E1066A *//* p2     =  6.3112487873718332688E-5    , Hex  2^-13   *  .845B4248CD0173 *//* q1     =  1.1363478204690669916E-1    , Hex  2^ -3   *  .E8B95A44A2EC45 *//* q2     =  1.2624568129896839182E-3    , Hex  2^ -9   *  .A5790572E4F5E7 *//* q3     =  1.5021856115869022674E-6    ; Hex  2^-19   *  .C99EB4604AC395 */static long        p1x[] = { 0x3abe3d78, 0x066a67e1};static long        p2x[] = { 0x5b423984, 0x017348cd};static long        q1x[] = { 0xb95a3ee8, 0xec4544a2};static long        q2x[] = { 0x79053ba5, 0xf5e772e4};static long        q3x[] = { 0x9eb436c9, 0xc395604a};#define       p1    (*(double*)p1x)#define       p2    (*(double*)p2x)#define       q1    (*(double*)q1x)#define       q2    (*(double*)q2x)#define       q3    (*(double*)q3x)#else	/* IEEE double */static double p1     =  1.3887401997267371720E-2    , /*Hex  2^ -7   *  1.C70FF8B3CC2CF */p2     =  3.3044019718331897649E-5    , /*Hex  2^-15   *  1.15317DF4526C4 */q1     =  1.1110813732786649355E-1    , /*Hex  2^ -4   *  1.C719538248597 */q2     =  9.9176615021572857300E-4    ; /*Hex  2^-10   *  1.03FC4CB8C98E8 */#endifstatic double exp__E(x,c)double x,c;{	double static zero=0.0, one=1.0, half=1.0/2.0;	double copysign(),z,p,q,xp,xh,w;           z = x*x  ;	   p = z*( p1 +z* p2 );#ifdef VAX           q = z*( q1 +z*( q2 +z* q3 ));#else	/* IEEE double */           q = z*( q1 +z*  q2 );#endif           xp= x*p     ; 	   xh= x*half  ;           w = xh-(q-xp)  ;	   p = p+p;	   c += x*((xh*w-(q-(p+xp)))/(one-w)+c);	   return(z*half+c);}static dummy(x)double x;{	return 1;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -