⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bessel.c

📁 操作系统SunOS 4.1.3版本的源码
💻 C
字号:
#ifndef lintstatic	char sccsid[] = "@(#)bessel.c 1.1 92/07/30 SMI";#endif/* * Copyright (c) 1987 by Sun Microsystems, Inc. *//* * floating point Bessel's function of the first and second kinds of order  * zero: j0(x),y0(x); of order one: j1(x), y1(x); of order n: jn(n,x),yn(n,x). * Code originated from 4.3bsd. * Modified by K.C. Ng for SUN 4.0 libm. *           * Special cases: *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. * * Note 1. About j0,j1,y0,y1: *	There is a niggling bug in J0 and J1 which *	causes errors up to 2e-16 for x in the *	interval [-8,8]. *	The bug is caused by an inappropriate order *	of summation of the series.  rhm will fix it *	someday. *	Coefficients are from Hart & Cheney. *	#5849 (19.22D)		... for j0 *	#6549 (19.25D)		... for j0 *	#6949 (19.41D)		... for j0 *	#6245 (18.78D)		... for y0 *	#6549 (19.25D)		... for y0 *	#6949 (19.41D)		... for y0 *	#6050 (20.98D)		... for j1 *	#6750 (19.19D)		... for j1 *	#7150 (19.35D)		... for j1 *	#6447 (22.18D)		... for y1 *	#6750 (19.19D)		... for y1 *	#7150 (19.35D)		... for y1 * * Note 2. About jn(n,x), yn(n,x) *	For n=0, j0(x) is called, *	for n=1, j1(x) is called, *	for n<x, forward recursion us used starting *	from values of j0(x) and j1(x). *	for n>x, a continued fraction approximation to *	j(n,x)/j(n-1,x) is evaluated and then backward *	recursion is used starting from a supposed value *	for j(n,x). The resulting value of j(0,x) is *	compared with the actual value to correct the *	supposed value of j(n,x). * *	yn(n,x) is similar in all respects, except *	that forward recursion is used for all *	values of n>1. *	 */#include <math.h>#include "libm.h"static double zero = 0.e0;static double pzero, qzero;static double tpi	= .6366197723675813430755350535e0;static double pio4	= .7853981633974483096156608458e0;static double p1[] = {	0.4933787251794133561816813446e21,	-.1179157629107610536038440800e21,	0.6382059341072356562289432465e19,	-.1367620353088171386865416609e18,	0.1434354939140344111664316553e16,	-.8085222034853793871199468171e13,	0.2507158285536881945555156435e11,	-.4050412371833132706360663322e8,	0.2685786856980014981415848441e5,};static double q1[] = {	0.4933787251794133562113278438e21,	0.5428918384092285160200195092e19,	0.3024635616709462698627330784e17,	0.1127756739679798507056031594e15,	0.3123043114941213172572469442e12,	0.6699987672982239671814028660e9,	0.1114636098462985378182402543e7,	0.1363063652328970604442810507e4,	1.0};static double p2[] = {	0.5393485083869438325262122897e7,	0.1233238476817638145232406055e8,	0.8413041456550439208464315611e7,	0.2016135283049983642487182349e7,	0.1539826532623911470917825993e6,	0.2485271928957404011288128951e4,	0.0,};static double q2[] = {	0.5393485083869438325560444960e7,	0.1233831022786324960844856182e8,	0.8426449050629797331554404810e7,	0.2025066801570134013891035236e7,	0.1560017276940030940592769933e6,	0.2615700736920839685159081813e4,	1.0,};static double p3[] = {	-.3984617357595222463506790588e4,	-.1038141698748464093880530341e5,	-.8239066313485606568803548860e4,	-.2365956170779108192723612816e4,	-.2262630641933704113967255053e3,	-.4887199395841261531199129300e1,	0.0,};static double q3[] = {	0.2550155108860942382983170882e6,	0.6667454239319826986004038103e6,	0.5332913634216897168722255057e6,	0.1560213206679291652539287109e6,	0.1570489191515395519392882766e5,	0.4087714673983499223402830260e3,	1.0,};static double p4[] = {	-.2750286678629109583701933175e20,	0.6587473275719554925999402049e20,	-.5247065581112764941297350814e19,	0.1375624316399344078571335453e18,	-.1648605817185729473122082537e16,	0.1025520859686394284509167421e14,	-.3436371222979040378171030138e11,	0.5915213465686889654273830069e8,	-.4137035497933148554125235152e5,};static double q4[] = {	0.3726458838986165881989980e21,	0.4192417043410839973904769661e19,	0.2392883043499781857439356652e17,	0.9162038034075185262489147968e14,	0.2613065755041081249568482092e12,	0.5795122640700729537480087915e9,	0.1001702641288906265666651753e7,	0.1282452772478993804176329391e4,	1.0,};doublej0(arg) double arg;{	double argsq, n, d;	double sin(), cos(), sqrt();	int i;	if(isnan(arg)) return arg+arg;	if(arg < 0.) arg = -arg;	if(arg > 8.){		if(!finite(arg)) return 0.0;		asympt(arg);		n = arg - pio4;		return(sqrt(tpi/arg)*(pzero*cos(n) - qzero*sin(n)));	}	argsq = arg*arg;	for(n=0,d=0,i=8;i>=0;i--){		n = n*argsq + p1[i];		d = d*argsq + q1[i];	}	return(n/d);}doubley0(arg) double arg;{	double argsq, n, d;	double sin(), cos(), sqrt(), log(), j0();	int i;	if(isnan(arg)) return arg+arg;	if(arg <= 0.){		if(arg==0) {		/*	d= -1.0/(arg-arg); */			return SVID_libm_err(arg,arg,8);		} else {		/* 	d = (arg-arg)/(arg-arg); */			return SVID_libm_err(arg,arg,9);		}	}	if(arg > 8.){		if(!finite(arg)) return 0.0;		asympt(arg);		n = arg - pio4;		return(sqrt(tpi/arg)*(pzero*sin(n) + qzero*cos(n)));	}	argsq = arg*arg;	for(n=0,d=0,i=8;i>=0;i--){		n = n*argsq + p4[i];		d = d*argsq + q4[i];	}	return(n/d + tpi*j0(arg)*log(arg));}staticasympt(arg) double arg;{	double zsq, n, d;	int i;	zsq = 64./(arg*arg);	for(n=0,d=0,i=6;i>=0;i--){		n = n*zsq + p2[i];		d = d*zsq + q2[i];	}	pzero = n/d;	for(n=0,d=0,i=6;i>=0;i--){		n = n*zsq + p3[i];		d = d*zsq + q3[i];	}	qzero = (8./arg)*(n/d);}/* coefficients for j1,y1 */static double xp1[] = {	0.581199354001606143928050809e21,	-.6672106568924916298020941484e20,	0.2316433580634002297931815435e19,	-.3588817569910106050743641413e17,	0.2908795263834775409737601689e15,	-.1322983480332126453125473247e13,	0.3413234182301700539091292655e10,	-.4695753530642995859767162166e7,	0.2701122710892323414856790990e4,};static double xq1[] = {	0.1162398708003212287858529400e22,	0.1185770712190320999837113348e20,	0.6092061398917521746105196863e17,	0.2081661221307607351240184229e15,	0.5243710262167649715406728642e12,	0.1013863514358673989967045588e10,	0.1501793594998585505921097578e7,	0.1606931573481487801970916749e4,	1.0,};static double xp2[] = {	-.4435757816794127857114720794e7,	-.9942246505077641195658377899e7,	-.6603373248364939109255245434e7,	-.1523529351181137383255105722e7,	-.1098240554345934672737413139e6,	-.1611616644324610116477412898e4,	0.0,};static double xq2[] = {	-.4435757816794127856828016962e7,	-.9934124389934585658967556309e7,	-.6585339479723087072826915069e7,	-.1511809506634160881644546358e7,	-.1072638599110382011903063867e6,	-.1455009440190496182453565068e4,	1.0,};static double xp3[] = {	0.3322091340985722351859704442e5,	0.8514516067533570196555001171e5,	0.6617883658127083517939992166e5,	0.1849426287322386679652009819e5,	0.1706375429020768002061283546e4,	0.3526513384663603218592175580e2,	0.0,};static double xq3[] = {	0.7087128194102874357377502472e6,	0.1819458042243997298924553839e7,	0.1419460669603720892855755253e7,	0.4002944358226697511708610813e6,	0.3789022974577220264142952256e5,	0.8638367769604990967475517183e3,	1.0,};static double xp4[] = {	-.9963753424306922225996744354e23,	0.2655473831434854326894248968e23,	-.1212297555414509577913561535e22,	0.2193107339917797592111427556e20,	-.1965887462722140658820322248e18,	0.9569930239921683481121552788e15,	-.2580681702194450950541426399e13,	0.3639488548124002058278999428e10,	-.2108847540133123652824139923e7,	0.0,};static double xq4[] = {	0.5082067366941243245314424152e24,	0.5435310377188854170800653097e22,	0.2954987935897148674290758119e20,	0.1082258259408819552553850180e18,	0.2976632125647276729292742282e15,	0.6465340881265275571961681500e12,	0.1128686837169442121732366891e10,	0.1563282754899580604737366452e7,	0.1612361029677000859332072312e4,	1.0,};doublej1(arg) double arg;{	double xsq, n, d, x;	double sin(), cos(), sqrt();	int i;	if(isnan(arg)) return arg+arg;	x = arg;	if(x < 0.) x = -x;	if(x > 8.){		if(!finite(arg)) return 1.0/arg;		xasympt(x);		n = x - 3.*pio4;		n = sqrt(tpi/x)*(pzero*cos(n) - qzero*sin(n));		if(arg <0.) n = -n;		return(n);	}	xsq = x*x;	for(n=0,d=0,i=8;i>=0;i--){		n = n*xsq + xp1[i];		d = d*xsq + xq1[i];	}	return(arg*n/d);}doubley1(arg) double arg;{	double xsq, n, d, x;	double sin(), cos(), sqrt(), log(), j1();	int i;	if(isnan(arg)) return arg+arg;	x = arg;	if(x <= 0.){		if(arg==0) {		/*	d= -1.0/(arg-arg); */			return SVID_libm_err(arg,arg,10);		} else {		/*	d = (arg-arg)/(arg-arg); */			return SVID_libm_err(arg,arg,11);		}	}	if(x > 8.){		if(!finite(arg)) return 0.0;		xasympt(x);		n = x - 3*pio4;		return(sqrt(tpi/x)*(pzero*sin(n) + qzero*cos(n)));	}	xsq = x*x;	for(n=0,d=0,i=9;i>=0;i--){		n = n*xsq + xp4[i];		d = d*xsq + xq4[i];	}	return(x*n/d + tpi*(j1(x)*log(x)-1./x));}staticxasympt(arg) double arg;{	double zsq, n, d;	int i;	zsq = 64./(arg*arg);	for(n=0,d=0,i=6;i>=0;i--){		n = n*zsq + xp2[i];		d = d*zsq + xq2[i];	}	pzero = n/d;	for(n=0,d=0,i=6;i>=0;i--){		n = n*zsq + xp3[i];		d = d*zsq + xq3[i];	}	qzero = (8./arg)*(n/d);}doublejn(n,x) int n; double x;{	int i;	double a, b, temp;	double xsq, t;	double j0(), j1();	if(n<0){		n = -n;		x = -x;	}	if(n==0) return(j0(x));	if(n==1) return(j1(x));	if(x!=x) return x+x;	if(x == 0.||!finite(x)) return(0.);	if(n>x) goto recurs;	a = j0(x);	b = j1(x);	for(i=1;i<n;i++){		temp = b;		b = (2.*i/x)*b - a;		a = temp;	}	return(b);recurs:	xsq = x*x;	for(t=0,i=n+16;i>n;i--){		t = xsq/(2.*i - t);	}	t = x/(2.*n-t);	a = t;	b = 1;	for(i=n-1;i>0;i--){		temp = b;		b = (2.*i/x)*b - a;		a = temp;	}	return(t*j0(x)/b);}double yn(n,x) int n; double x;{	int i;	int sign;	double a, b, temp;	double y0(), y1();	if(x!=x) return x+x;	if (x <= 0) {		if(x==0) {		/*	temp = -1.0/(x-x); */			return SVID_libm_err((double)n,x,12);		} else {		/*	temp = (x-x)/(x-x); */			return SVID_libm_err((double)n,x,13);		}	}	sign = 1;	if(n<0){		n = -n;		if(n%2 == 1) sign = -1;	}	if(n==0) return(y0(x));	if(n==1) return(sign*y1(x));	if(!finite(x)) return 0.0;	a = y0(x);	b = y1(x);	for(i=1;i<n;i++){		temp = b;		b = (2.*i/x)*b - a;		a = temp;	}	return(sign*b);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -