📄 lgamma.c
字号:
#ifndef lintstatic char sccsid[] = "@(#)lgamma.c 1.1 92/07/30 SMI";#endif/* * Copyright (c) 1989 by Sun Microsystems, Inc. *//* double lgamma(double x) * K.C. Ng, March, 1989. * * Part of the algorithm is based on cody's lgamma function. */extern double SVID_libm_err(),log(),sinpi(),lgamma(),fabs();int signgam = 0;static double one = 1.0,zero = 0.0,hln2pi = 0.9189385332046727417803297, /* log(2*pi)/2 */pi = 3.1415926535897932384626434,/* * Numerator and denominator coefficients for rational minimax Approximation * P/Q over (0.5,1.5). */D1 = -5.772156649015328605195174e-1,p7 = 4.945235359296727046734888e0,p6 = 2.018112620856775083915565e2,p5 = 2.290838373831346393026739e3,p4 = 1.131967205903380828685045e4,p3 = 2.855724635671635335736389e4,p2 = 3.848496228443793359990269e4,p1 = 2.637748787624195437963534e4,p0 = 7.225813979700288197698961e3,q7 = 6.748212550303777196073036e1,q6 = 1.113332393857199323513008e3,q5 = 7.738757056935398733233834e3,q4 = 2.763987074403340708898585e4,q3 = 5.499310206226157329794414e4,q2 = 6.161122180066002127833352e4,q1 = 3.635127591501940507276287e4,q0 = 8.785536302431013170870835e3,/* * Numerator and denominator coefficients for rational minimax Approximation * G/H over (1.5,4.0). */D2 = 4.227843350984671393993777e-1,g7 = 4.974607845568932035012064e0,g6 = 5.424138599891070494101986e2,g5 = 1.550693864978364947665077e4,g4 = 1.847932904445632425417223e5,g3 = 1.088204769468828767498470e6,g2 = 3.338152967987029735917223e6,g1 = 5.106661678927352456275255e6,g0 = 3.074109054850539556250927e6,h7 = 1.830328399370592604055942e2,h6 = 7.765049321445005871323047e3,h5 = 1.331903827966074194402448e5,h4 = 1.136705821321969608938755e6,h3 = 5.267964117437946917577538e6,h2 = 1.346701454311101692290052e7,h1 = 1.782736530353274213975932e7,h0 = 9.533095591844353613395747e6,/* * Numerator and denominator coefficients for rational minimax Approximation * U/V over (4.0,12.0). */D4 = 1.791759469228055000094023e0,u7 = 1.474502166059939948905062e4,u6 = 2.426813369486704502836312e6,u5 = 1.214755574045093227939592e8,u4 = 2.663432449630976949898078e9,u3 = 2.940378956634553899906876e10,u2 = 1.702665737765398868392998e11,u1 = 4.926125793377430887588120e11,u0 = 5.606251856223951465078242e11,v7 = 2.690530175870899333379843e3,v6 = 6.393885654300092398984238e5,v5 = 4.135599930241388052042842e7,v4 = 1.120872109616147941376570e9,v3 = 1.488613728678813811542398e10,v2 = 1.016803586272438228077304e11,v1 = 3.417476345507377132798597e11,v0 = 4.463158187419713286462081e11,/* * Coefficients for minimax approximation over (12, INF). */c5 = -1.910444077728e-03,c4 = 8.4171387781295e-04,c3 = -5.952379913043012e-04,c2 = 7.93650793500350248e-04,c1 = -2.777777777777681622553e-03,c0 = 8.333333333333333331554247e-02,c6 = 5.7083835261e-03;double lgamma(x)double x;{ double neg(); double t,p,q,cr,y; /* purge off +-inf, NaN and negative arguments */ if(!finite(x)) return x*x; signgam = 1; if(signbit(x)) return(neg(x)); /* lgamma(x) ~ log(1/x) for really tiny x */ t = one+x; if(t==one) return -log(x); /* for tiny < x < inf */ if(x<=1.5) { if(x<0.6796875) {cr = -log(x); y=x;} else {cr = zero; y = x-one;} if(x<=0.5||x>=0.6796875) { if(x==one) return zero; p = p0+y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7)))))); q = q0+y*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*(q6+y*(q7+y))))))); return cr+y*(D1+y*(p/q)); } else { y = x-one; p = g0+y*(g1+y*(g2+y*(g3+y*(g4+y*(g5+y*(g6+y*g7)))))); q = h0+y*(h1+y*(h2+y*(h3+y*(h4+y*(h5+y*(h6+y*(h7+y))))))); return cr+y*(D2+y*(p/q)); } } else if (x<=4.0) { if(x==2.0) return zero; y = x-2.0; p = g0+y*(g1+y*(g2+y*(g3+y*(g4+y*(g5+y*(g6+y*g7)))))); q = h0+y*(h1+y*(h2+y*(h3+y*(h4+y*(h5+y*(h6+y*(h7+y))))))); return y*(D2+y*(p/q)); } else if (x<=12.0) { y = x-4.0; p = u0+y*(u1+y*(u2+y*(u3+y*(u4+y*(u5+y*(u6+y*u7)))))); q = v0+y*(v1+y*(v2+y*(v3+y*(v4+y*(v5+y*(v6+y*(v7-y))))))); return D4+y*(p/q); } else if (x<=1.0e17) { /* x ~< 2**(prec+3) */ t = one/x; y = t*t; p = hln2pi+t*(c0+y*(c1+y*(c2+y*(c3+y*(c4+y*(c5+y*c6)))))); q = log(x); return x*(q-one)-(0.5*q-p); } else { /* may overflow */ t = x*log(x)-x; if(!finite(t)) t = SVID_libm_err(x,x,14); return t; }}static double neg(z)double z;{ double t,p; /* * written by K.C. Ng, Feb 2, 1989. * * Since * -z*G(-z)*G(z) = pi/sin(pi*z), * we have * G(-z) = -pi/(sin(pi*z)*G(z)*z) * = pi/(sin(pi*(-z))*G(z)*z) * Algorithm * z = |z| * t = sinpi(z); ...note that when z>2**52, z is an int * and hence t=0. * * if(t==0.0) return 1.0/0.0; * if(t< 0.0) signgam = -1; else t= -t; * if(z+1.0==1.0) ...tiny z * return -log(z); * else * return log(pi/(t*z))-lgamma(z); * */ t = sinpi(z); /* t := sin(pi*z) */ if (t==zero) { /* return 1.0/0.0 = +INF */ return SVID_libm_err(z,z,15); } z = -z; p = z+one; if(p==one) p = -log(z); else p = log(pi/(fabs(t)*z))-lgamma(z); if(t<zero) signgam = -1; return p;}double gamma(x)double x ;{ return(lgamma(x));}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -