⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 index.htm

📁 从IEEE收集的小波分析入门的资料
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0046)http://www.amara.com/IEEEwave/IEEEwavelet.html -->
<!-- Amara Graps' IEEE Paper: An Intro to Wavelets --><HTML><HEAD><TITLE>An Introduction to Wavelets</TITLE>
<META http-equiv=Content-Type content="text/html; charset=gb2312"><LINK rev=made 
href="mailto:amara@amara.com"><!-- Make Background color GhostWhite and all links color DarkBlue-->
<META content="MSHTML 6.00.2600.0" name=GENERATOR></HEAD>
<BODY link=#00008b bgColor=#f8f8ff>
<BLOCKQUOTE>
  <HR align=center noShade SIZE=2>

  <P>
  <H2><FONT size=8>A</FONT>n <FONT size=8>I</FONT>ntroduction to <FONT 
  size=8>W</FONT>avelets</H2>
  <P>
  <HR align=center noShade SIZE=2>

  <P>
  <H3>Abstract</H3><ABSTRACT>Wavelets are mathematical functions that cut up 
  data into different frequency components, and then study each component with a 
  resolution matched to its scale. They have advantages over traditional Fourier 
  methods in analyzing physical situations where the signal contains 
  discontinuities and sharp spikes. Wavelets were developed independently in the 
  fields of mathematics, quantum physics, electrical engineering, and seismic 
  geology. Interchanges between these fields during the last ten years have led 
  to many new wavelet applications such as image compression, turbulence, human 
  vision, radar, and earthquake prediction. This paper introduces wavelets to 
  the interested technical person outside of the digital signal processing 
  field. I describe the history of wavelets beginning with Fourier, compare 
  wavelet transforms with Fourier transforms, state properties and other special 
  aspects of wavelets, and finish with some interesting applications such as 
  image compression, musical tones, and de-noising noisy data. 
  <P>Keywords: Wavelets, Signal Processing Algorithms, Orthogonal Basis 
  Functions, Wavelet Applications </ABSTRACT>
  <P>
  <HR align=center noShade SIZE=1>
  <A name=contents></A>
  <H3>Contents:</H3>
  <OL>
    <LI><A href="http://www.amara.com/IEEEwave/IW_overview.html">Overview</A> 
    <BR><BR>
    <LI><A href="http://www.amara.com/IEEEwave/IW_history.html">Historical 
    Perspective</A> <BR><BR>
    <LI><A href="http://www.amara.com/IEEEwave/IW_basis.html">Sidebar- What are 
    Basis Functions?</A> <BR><BR>
    <LI><A href="http://www.amara.com/IEEEwave/IW_fourier_ana.html">Fourier 
    Analysis</A> <BR><BR>
    <LI><A href="http://www.amara.com/IEEEwave/IW_wave_vs_four.html">Wavelet 
    Transforms versus Fourier Transforms</A> <BR><BR>
    <LI><A href="http://www.amara.com/IEEEwave/IW_see_wave.html">What Do Some 
    Wavelets Look Like?</A> <BR><BR>
    <LI><A href="http://www.amara.com/IEEEwave/IW_wave_ana.html">Wavelet 
    Analysis</A> <BR><BR>
    <LI><B>Wavelet Applications</B></A> 
    <P>
    <UL>
      <LI><A href="http://www.amara.com/IEEEwave/IW_vision.html">Computer and 
      Human Vision</A> <BR><BR>
      <LI><A href="http://www.amara.com/IEEEwave/IW_fbi.html">FBI Fingerprint 
      Compression</A> <BR><BR>
      <LI><A href="http://www.amara.com/IEEEwave/IW_denoising.html">Denoising 
      Noisy Data</A> <BR><BR>
      <LI><A href="http://www.amara.com/IEEEwave/IW_selfsim.html">Detecting 
      Self-Similarity in a Time Series</A> <BR><BR>
      <LI><A href="http://www.amara.com/IEEEwave/IW_musicaltones.html">Musical 
      Tones</A> </LI></UL><BR>
    <LI><A href="http://www.amara.com/IEEEwave/IW_endnote.html">Wavelets 
    Endnote</A> <BR><BR>
    <LI><A href="http://www.amara.com/IEEEwave/IW_ref.html">References</A> 
  </LI></OL>
  <HR align=center noShade SIZE=1>

  <P>
  <H4>To Download This Paper:</H4>
  <P>Press <A href="http://www.amara.com/ftpstuff/IEEEwavelet.ps.gz">HERE </A>to 
  FTP a gzipped, postscript copy. (800 Kbytes compressed, gunzips to 2.6 
  Mbytes). 
  <P>
  <HR align=center noShade SIZE=1>

  <H4>Copyright Notice</H4>
  <H6>Copyright (c) 1995 by the Institute of Electrical and Electronics 
  Engineers, Inc. Personal use of this material is permitted. However, 
  permission to reprint/republish this material in digital or hard copy form 
  must be obtained from the IEEE. To copy or otherwise, to republish, to post on 
  servers, to redistribute to lists, or to use any component of this work in 
  other works for any purpose requires prior permission from the IEEE. A fee may 
  be charged for re-use. Abstracting with credit is permitted. Copyrights for 
  components of this work owned by others than IEEE must be honored. 
  <P>The original version of this work appears in IEEE Computational Science and 
  Engineering, Summer 1995, vol. 2, num. 2, published by the IEEE Computer 
  Society, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720, USA, TEL 
  +1-714-821-8380, FAX +1-714-821-4010. </H6>
  <P>
  <HR align=center noShade SIZE=3>

  <P><!-- Closing -->
  <CENTER>
  <TABLE cellSpacing=5 cellPadding=10>
    <TBODY>
    <TR><!-- To Wavelet Resources Page -->
      <TD><BASEFONT size=2><B><A 
        href="http://www.amara.com/current/wavelet.html"><IMG alt="" 
        src="An Introduction to Wavelets.files/wavebutton.gif" align=middle> 
        Wavelet Resources</A> </B></BASEFONT></TD><!-- To Home -->
      <TD><BASEFONT size=2><B><A 
        href="http://www.amara.com/index.html#Overview"><IMG alt="" 
        src="An Introduction to Wavelets.files/AGHTMLIcon.gif" align=middle> 
        Home</A> </B></BASEFONT></TD></TR></TBODY></TABLE></CENTER>
  <P>
  <HR align=center noShade SIZE=2>

  <CENTER>
  <TABLE>
    <TBODY>
    <TR><!-- Miscellaneous Contact Information -->
      <TD><BASEFONT size=2>
        <ADDRESS>Last Modified by <A href="mailto:amara@amara.com">Amara 
        Graps</A> on 8 October 1997.<BR>&copy; Copyright Amara Graps, 1995-1997. 
        </ADDRESS></BASEFONT></TD></TR></TBODY></TABLE></CENTER></BLOCKQUOTE></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -