⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 an introduction to wavelets what are basis functions.htm

📁 从IEEE收集的小波分析入门的资料
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0043)http://www.amara.com/IEEEwave/IW_basis.html -->
<!-- Amara Graps' IEEE Paper: An Intro to Wavelets --><HTML><HEAD><TITLE>An Introduction to Wavelets: What are Basis Functions?</TITLE>
<META http-equiv=Content-Type content="text/html; charset=gb2312"><LINK rev=made 
href="mailto:amara@amara.com"><!-- Make Background color GhostWhite and all links color DarkBlue-->
<META content="MSHTML 6.00.2600.0" name=GENERATOR></HEAD>
<BODY link=#00008b bgColor=#f8f8ff>
<BLOCKQUOTE>
  <HR align=center noShade SIZE=2>

  <P>
  <H3><FONT size=8>S</FONT>idebar- <FONT size=6>W</FONT>hat are <FONT 
  size=6>B</FONT>asis <FONT size=6>F</FONT>unctions?</H3>
  <P>
  <HR align=center noShade SIZE=2>

  <H3>What are Basis Functions?</H3>It is simpler to explain a basis function if 
  we move out of the realm of analog (functions) and into the realm of digital 
  (vectors) (*). Every two-dimensional vector <EM>(x,y)</EM> is a combination of 
  the vector <EM>(1,0)</EM> and <EM>(0,1).</EM> These two vectors are the basis 
  vectors for <EM>(x,y)</EM>. Why? Notice that <EM>x</EM> multiplied by 
  <EM>(1,0)</EM> is the vector <EM>(x,0)</EM>, and <EM>y</EM> multiplied by 
  <EM>(0,1)</EM> is the vector <EM>(0,y)</EM>. The sum is <EM>(x,y)</EM>. 
  <P>The best basis vectors have the valuable extra property that the vectors 
  are perpendicular, or orthogonal to each other. For the basis <EM>(1,0)</EM> 
  and <EM>(0,1),</EM> this criteria is satisfied. 
  <P>Now let's go back to the analog world, and see how to relate these concepts 
  to basis functions. Instead of the vector <EM>(x,y)</EM>, we have a function 
  <EM>f(x)</EM>. Imagine that <EM>f(x)</EM> is a musical tone, say the note 
  <EM>A</EM> in a particular octave. We can construct <EM>A</EM> by adding sines 
  and cosines using combinations of amplitudes and frequencies. The sines and 
  cosines are the basis functions in this example, and the elements of Fourier 
  synthesis. For the sines and cosines chosen, we can set the additional 
  requirement that they be orthogonal. How? By choosing the appropriate 
  combination of sine and cosine function terms whose inner product add up to 
  zero. The particular set of functions that are orthogonal <EM>and</EM> that 
  construct <EM>f(x)</EM> are our orthogonal basis functions for this problem. 
  <H3>What are Scale-Varying Basis Functions?</H3>A basis function varies in 
  scale by chopping up the same function or data space using different scale 
  sizes. For example, imagine we have a signal over the domain from 0 to 1. We 
  can divide the signal with two step functions that range from 0 to 1/2 and 1/2 
  to 1. Then we can divide the original signal again using four step functions 
  from 0 to 1/4, 1/4 to 1/2, 1/2 to 3/4, and 3/4 to 1. And so on. Each set of 
  representations code the original signal with a particular resolution or 
  scale. 
  <P>
  <H4>Reference</H4>(*) G. Strang, "Wavelets," </EM>American Scientist,</EM> 
  Vol. 82, 1992, pp. 250-255. 
  <P>
  <P>
  <HR align=center noShade SIZE=2>

  <P><B><A href="http://www.amara.com/index.html">[Home]</A> <A 
  href="http://www.amara.com/current/wavelet.html">[Wavelet Page]</A> <A 
  href="http://www.amara.com/IEEEwave/IEEEwavelet.html#contents">[Contents]</A> 
  <A href="http://www.amara.com/IEEEwave/IW_history.html">[Previous]</A> <A 
  href="http://www.amara.com/IEEEwave/IW_fourier_ana.html">[Next]</A> </B>
  <P>
  <HR align=center noShade SIZE=2>

  <P>
  <H5>You may <A 
  href="http://www.amara.com/ftpstuff/IEEEwavelet.ps.gz">download</A> this 
  paper: "Introduction to Wavelets" </H5>
  <P>
  <HR align=center noShade SIZE=2>

  <CENTER>
  <TABLE>
    <TBODY>
    <TR><!-- Miscellaneous Contact Information -->
      <TD><BASEFONT size=2>
        <ADDRESS>Last Modified by <A href="mailto:amara@amara.com">Amara 
        Graps</A> on 8 October 1997.<BR>&copy; Copyright Amara Graps, 1995-1997. 
        </ADDRESS></BASEFONT></TD></TR></TBODY></TABLE></CENTER></BLOCKQUOTE></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -