📄 analw.m
字号:
function [an,pl] = analw(dat,al,ah,levs)
%Routine to compute DWT using odd length or whole sample symmetric
%(WSS) biorthogonal filter bank. Symmetric extensions are used to
%extend the data to perform the DWT.
%
%[an,p] = analw(array,lpf,hpf,L) effects an L level DWT of the input array.
%The analysis filter bank is defined by lpf and hpf. The output is
%returned in array 'an', while 'p' contains the end index of each
%sequence.
%
%[an,p] = analw(array, fopt,L) effects an L level DWT of the input array.
%The analysis filter bank is chosen using fopt to be one of the
%prestored filter banks. The output is returned in array 'an', while 'p'
%contains the end index of each sequence.
%
%
%Input variables are
%array : Input array
%lpf, hpf: Lowpass and highpass filters constituting the biorthogonal
% WSS filter bank.
%OR
%fopt : Choose fopt to be 1 or 2. They correspond to the 9/7 and 7/9
% tap filters used by FBI for their fingerprint image
% compression scheme.
%L : Number of levels of decomposition.
%
%One can separate the subbands using the list 'p' that contains the end
%index of each subband, starting with the low pass subband.
%
%Individual subband coefficients are plotted after the decomposition
%starting with the low pass subband positioned in the top left corner
%of the subplot and ending with the detail function at the first level
%positioned at the bottom right of the subplot.
%
%It is required that at each level of decomposition, the input to the
%filter bank at that level have length 'len' such that '2*len-2 >=lm',
%where, 'lm' is the length of the larger of the filters in the filter
%bank.
%
%The routine checks to see if this condition is met at each level. If
%not, then the routine calculates the maximum number of levels for
%which this criteria is met and returns this value. The input array is
%then decomposed down to this new number of levels.
%
%See also the complementary synthesis function 'synthw'.
%
%Refer to Chapter 4 for information on biorthogonal wavelet
%decompositions.
%
%Author: Ajit S. Bopardikar
%Copyright (c) 1998 by Addison Wesley Longman, Inc.
%
num = nargin; %number of input arguments
if (num ==3)
levs = ah;
if(al == 1)
al =[0.03782845550700 -0.02384946501938 -0.11062440441842 0.37740285561265 0.85269867900940 0.37740285561265 -0.11062440441842 -0.02384946501938 0.03782845550700];
ah =[0.06453888262894 -0.04068941760956 -0.41809227322221 0.78848561640566 -0.41809227322221 -0.04068941760956 0.06453888262894];
elseif (al >=2)
if (al > 2)
fprintf('fopt chosen to be greater than 2. Using fopt=2 instead\n');
end;
al =[-0.06453888262894 -0.04068941760956 0.41809227322221 0.78848561640566 0.41809227322221 -0.04068941760956 -0.06453888262894];
ah =[0.03782845550700 0.02384946501938 -0.11062440441840 -0.37740285561265 0.85269867900940 -0.37740285561265 -0.11062440441840 0.02384946501938 0.03782845550700];
end %end inner if
end %enf if
ll = length(dat); %initialize
an = dat; %initialize
pl = [ll]; %initialize the subband length array
%Algorithm to check if the number of levels input is valid.
lev1=0; %initialize
ll1 = ll; %initialize
lo = length(al); %initialize
hi = length(ah); %initialize
lm = max(lo,hi); %determine the larger of the filter lengths
while ((2*ll1-2) > lm)
if (ll1/2 == round(ll1/2)) %even length sequence
ll1=ll1/2;
else
if (lo>hi) %if low pass filter has larger length...
ll1=ceil(ll1/2);
else %if low pass filter has smaller length...
ll1=floor(ll1/2);
end %endif
end %endif
lev1=lev1+1;
pl=[pl ll1];
end %endwhile
if (lev1<levs)
fprintf('Cant decompose to %d levels. Decomposing to %d levels instead.\n',levs,lev1);
levs=lev1;
end %endif
%begin DWT
for i=1:levs
if (pl(i)/2 == round(pl(i)/2)) %even length
an1 = bianal1(an(1:pl(i)),al,ah); %1 level DWT for the even length case
else %odd length
an1 = bianal3(an(1:pl(i)),al,ah); %1 level DWT for the odd length case
end %endif
%one level of decomposition
an(1:pl(i)) = an1(1:pl(i)); %update the DWT array
end; %after all the levels of wavelet decomposition
if (levs/2 == round(levs/2)) %even number of levels
sr = levs/2 + 1;
else
sr = round(levs/2); %number of rows in the subplot
end
pl =pl((levs+1):-1:1);
subplot(sr,2,1); %top left corner
plot(an(1:pl(1)));title('Coarse Approximation Coefficients');
%plot the low pass part....
%plot the detail functions
for i= 1:levs
subplot(sr,2,i+1);
t = ['Level' ' ' num2str(levs-i+1) ' ' 'Detail Coefficients'];
plot(an(pl(i)+1:pl(i+1)));title(t);
end %end for
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -