📄 analh.m
字号:
function [an,pl] = analh(data,al,ah,levs)
%Routine to compute DWT using an even length half sample symmetric
%(HSS) biorthogonal filter bank. Symmetric extensions are used to
%extend the data to perform the DWT.
%
%[an,p] = analh(array,lpf,hpf,L) effects an L level DWT of the input array.
%The analysis filter bank is defined by lpf and hpf. The decomposed
%sequence is returned in 'an', while 'p' contains the end index of
%each subband.
%
%[an,p] = analh(array, fopt,L) effects an L level DWT of the input array.
%The analysis filter bank is chosen using fopt to be one of the
%prestored filter banks.The decomposed sequence is returned in 'an',
%while 'p' contains the end index of each subband.
%
%Individual subbands are plotted after the decomposition starting with
%the low pass band and ending with the detail function at the first level.
%
%Input variables are
%array : Input array
%lpf, hpf: Lowpass and highpass filters constituting the biorthogonal
% HSS filter bank.
%OR
%fopt : Choose fopt to be 1,2 or 3. They correspond to the 2/6 and 6/2
% 4/4 tap filter banks respectively.
%L : Number of levels of decomposition.
%
%One can separate the subbands using the list 'p' that contains the end
%coordinates of each subband, starting with the lowpass subband.
%
%Individual subband coefficients are plotted after the decomposition
%starting with the low pass subband positioned in the top left corner
%of the subplot and ending with the detail function at the first level
%positioned at the bottom right of the subplot.
%
%It is required that at each level of decomposition, the input to the
%filter bank at that level have length 'len' such that '2*len >=lm',
%where, 'lm' is the length of the larger of the filters in the filter
%bank.
%
%The routine checks to see if this condition is met at each level. If
%not, then the routine calculates the maximum number of levels for
%which this criteria is met and returns this value. The input data is
%then decomposed down to this new number of levels.
%
%See also the complementary synthesis routine 'synthh'.
%
%Refer to Chapter 4 for information on biorthogonal wavelet
%decompositions.
%
%Author: Ajit S. Bopardikar
%Copyright (c) 1998 by Addison Wesley Longman, Inc.
%
num = nargin; %number of input arguments
%if the number of input arguments is 3 then use the second argument to
%pick up the filter bank and the third argument gives the number of levels
if (num ==3)
levs = ah;
if(al == 1)
al =[0.70710678118655 0.70710678118655];
ah =[-0.17677669529664 -0.17677669529664 0.70710678118655 -0.70710678118655 0.17677669529664 0.17677669529664];
elseif (al ==2)
al =[-0.17677669529664 0.17677669529664 0.70710678118655 0.70710678118655 0.17677669529664 -0.17677669529664];
ah =[-0.70710678118655 0.70710678118655];
elseif (al >=3)
if (al > 3)
fprintf('fopt chosen to be greater than 3. Using fopt=3 instead\n');
end;
al =[0.17677669529664 0.53033008588991 0.53033008588991 0.17677669529664];
ah =[-0.35355339059327 -1.06066017177982 1.06066017177982 0.35355339059327];
end %end inner if
end %enf if
l =length(data);
an = data;
pl = [l]; %initialize an array for plotting data....
%Algorithm to check if the number of levels input is valid
lev1 = 0; %initialize
l1 = l; %initialize
lo = length(al); %initialize
hi = length(ah); %initialize
lm = max(lo,hi); %determine the larger of the filter lengths
while(2*l1>= lm)
if (lo/4 == round(lo/4)) %center odd
if(l1/2 == round(l1/2)) %length of data even
l1=l1/2;
else %length odd
l1=(l1+1)/2;
end %end inner if
else %center even
if(l1/2 == round(l1/2))
l1 = l1/2 +1;
else
l1 = (l1+1)/2;
end %end inner if
end %end outer if
lev1 =lev1+1;
pl = [l1 pl]; %update the plot array
end %end while
if (lev1<levs)
fprintf('Cant decompose to %d levels. Decomposing to %d levels instead.\n',levs,lev1);
levs=lev1;
end %endif
lp = length(pl);
plr= pl(lp:-1:lp-levs);
for i=1:levs
an1 = bianal2(an(1:plr(i)),al,ah); %one level decomposition
an(1:plr(i)) = an1;
end %endfor
if(levs/2 == round(levs/2)) %determine the number of rows in subplot
sr = levs/2 +1;
else
sr = round(levs/2);
end
pl = plr((levs+1):-1:1);
subplot(sr,2,1)
plot(an(1:pl(1)));title('Coarse Approximation Coefficients');
%plot the low pass part....
%plot the detail functions
for i= 1:levs
subplot(sr,2,i+1);
t = ['Level' ' ' num2str(levs-i+1) ' ' 'Detail Coefficients'];
plot(an(pl(i)+1:pl(i+1)));title(t);
end %end for
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -