📄 lll_qp.cpp
字号:
if (bound == 0) {
// we tolerate a 15% loss of precision in computing
// inner products in ComputeGS.
bound = 1;
for (i = 2*long(0.15*2*NTL_DOUBLE_PRECISION); i > 0; i--) {
bound = bound * 2;
}
}
quad_float half = to_quad_float(0.5);
quad_float half_plus_fudge = 0.5 + red_fudge;
quit = 0;
k = init_k;
vec_long st_mem;
st_mem.SetLength(m+2);
long *st = st_mem.elts();
for (i = 1; i < k; i++)
st[i] = i;
for (i = k; i <= m+1; i++)
st[i] = 1;
quad_float *buf;
buf = NTL_NEW_OP quad_float [m+1];
if (!buf) Error("out of memory in lll_LLL_QP");
vec_long in_vec_mem;
in_vec_mem.SetLength(n+1);
long *in_vec = in_vec_mem.elts();
double *max_b;
max_b = NTL_NEW_OP double [m+1];
if (!max_b) Error("out of memory in lll_LLL_QP");
for (i = 1; i <= m; i++)
max_b[i] = max_abs(B1[i], n);
long in_float;
long rst;
long counter;
long trigger_index;
long small_trigger;
long cnt;
long max_k = 0;
double tt;
while (k <= m) {
if (k > max_k) {
max_k = k;
}
if (verbose) {
tt = GetTime();
if (tt > LastTime + LLLStatusInterval)
LLLStatus(max_k, tt, m, B);
}
if (st[k] == k)
rst = 1;
else
rst = k;
if (st[k] < st[k+1]) st[k+1] = st[k];
ComputeGS(B, B1, mu, b, c, k, bound, st[k], buf);
CheckFinite(&c[k]);
st[k] = k;
counter = 0;
trigger_index = k;
small_trigger = 0;
cnt = 0;
do {
// size reduction
counter++;
if (counter > 10000) {
cerr << "LLL_QP: warning--possible infinite loop\n";
counter = 0;
}
Fc1 = 0;
for (j = rst-1; j >= 1; j--) {
t1 = fabs(mu[k][j]);
if (t1 > half_plus_fudge) {
if (!Fc1) {
if (j > trigger_index ||
(j == trigger_index && small_trigger)) {
cnt++;
if (cnt > 10) {
inc_red_fudge();
half_plus_fudge = 0.5 + red_fudge;
cnt = 0;
}
}
trigger_index = j;
small_trigger = (t1 < 4);
Fc1 = 1;
RowTransformStart(B1[k], in_vec, in_float, n);
}
mu1 = mu[k][j];
if (mu1 >= 0)
mu1 = ceil(mu1-half);
else
mu1 = floor(mu1+half);
quad_float *mu_k = mu[k];
quad_float *mu_j = mu[j];
if (mu1 == 1) {
for (i = 1; i <= j-1; i++)
mu_k[i] -= mu_j[i];
}
else if (mu1 == -1) {
for (i = 1; i <= j-1; i++)
mu_k[i] += mu_j[i];
}
else {
for (i = 1; i <= j-1; i++)
mu_k[i] -= mu1*mu_j[i];
}
// cout << j << " " << mu[k][j] << " " << mu1 << "\n";
mu_k[j] -= mu1;
conv(MU, mu1);
RowTransform(B(k), B(j), MU, B1[k], B1[j], in_vec,
max_b[k], max_b[j], in_float);
if (U) RowTransform((*U)(k), (*U)(j), MU);
}
}
if (Fc1) {
RowTransformFinish(B(k), B1[k], in_vec);
max_b[k] = max_abs(B1[k], n);
b[k] = InnerProduct(B1[k], B1[k], n);
CheckFinite(&b[k]);
ComputeGS(B, B1, mu, b, c, k, bound, 1, buf);
CheckFinite(&c[k]);
}
} while (Fc1);
if (check && (*check)(B(k)))
quit = 1;
if (b[k] == 0) {
for (i = k; i < m; i++) {
// swap i, i+1
swap(B(i), B(i+1));
tp = B1[i]; B1[i] = B1[i+1]; B1[i+1] = tp;
t1 = b[i]; b[i] = b[i+1]; b[i+1] = t1;
dt1 = max_b[i]; max_b[i] = max_b[i+1]; max_b[i+1] = dt1;
if (U) swap((*U)(i), (*U)(i+1));
}
for (i = k; i <= m+1; i++) st[i] = 1;
m--;
if (quit) break;
continue;
}
if (quit) break;
if (deep > 0) {
// deep insertions
quad_float cc = b[k];
long l = 1;
while (l <= k-1 && delta*c[l] <= cc) {
cc = cc - mu[k][l]*mu[k][l]*c[l];
l++;
}
if (l <= k-1 && (l <= deep || k-l <= deep)) {
// deep insertion at position l
for (i = k; i > l; i--) {
// swap rows i, i-1
swap(B(i), B(i-1));
tp = B1[i]; B1[i] = B1[i-1]; B1[i-1] = tp;
tp = mu[i]; mu[i] = mu[i-1]; mu[i-1] = tp;
t1 = b[i]; b[i] = b[i-1]; b[i-1] = t1;
dt1 = max_b[i]; max_b[i] = max_b[i-1]; max_b[i-1] = dt1;
if (U) swap((*U)(i), (*U)(i-1));
}
k = l;
NumSwaps++;
continue;
}
} // end deep insertions
// test LLL reduction condition
if (k > 1 && delta*c[k-1] > c[k] + mu[k][k-1]*mu[k][k-1]*c[k-1]) {
// swap rows k, k-1
swap(B(k), B(k-1));
tp = B1[k]; B1[k] = B1[k-1]; B1[k-1] = tp;
tp = mu[k]; mu[k] = mu[k-1]; mu[k-1] = tp;
t1 = b[k]; b[k] = b[k-1]; b[k-1] = t1;
dt1 = max_b[k]; max_b[k] = max_b[k-1]; max_b[k-1] = dt1;
if (U) swap((*U)(k), (*U)(k-1));
k--;
NumSwaps++;
// cout << "- " << k << "\n";
}
else {
k++;
// cout << "+ " << k << "\n";
}
}
if (verbose) {
LLLStatus(m+1, GetTime(), m, B);
}
delete [] buf;
delete [] max_b;
return m;
}
static
long LLL_QP(mat_ZZ& B, mat_ZZ* U, quad_float delta, long deep,
LLLCheckFct check)
{
long m = B.NumRows();
long n = B.NumCols();
long i, j;
long new_m, dep, quit;
quad_float s;
ZZ MU;
quad_float mu1;
quad_float t1;
ZZ T1;
init_red_fudge();
if (U) ident(*U, m);
quad_float **B1; // approximates B
typedef quad_float *quad_floatptr;
B1 = NTL_NEW_OP quad_floatptr[m+1];
if (!B1) Error("LLL_QP: out of memory");
for (i = 1; i <= m; i++) {
B1[i] = NTL_NEW_OP quad_float[n+1];
if (!B1[i]) Error("LLL_QP: out of memory");
}
quad_float **mu;
mu = NTL_NEW_OP quad_floatptr[m+1];
if (!mu) Error("LLL_QP: out of memory");
for (i = 1; i <= m; i++) {
mu[i] = NTL_NEW_OP quad_float[m+1];
if (!mu[i]) Error("LLL_QP: out of memory");
}
quad_float *c; // squared lengths of Gramm-Schmidt basis vectors
c = NTL_NEW_OP quad_float[m+1];
if (!c) Error("LLL_QP: out of memory");
quad_float *b; // squared lengths of basis vectors
b = NTL_NEW_OP quad_float[m+1];
if (!b) Error("LLL_QP: out of memory");
for (i = 1; i <=m; i++)
for (j = 1; j <= n; j++) {
conv(B1[i][j], B(i, j));
CheckFinite(&B1[i][j]);
}
for (i = 1; i <= m; i++) {
b[i] = InnerProduct(B1[i], B1[i], n);
CheckFinite(&b[i]);
}
new_m = ll_LLL_QP(B, U, delta, deep, check, B1, mu, b, c, m, 1, quit);
dep = m - new_m;
m = new_m;
if (dep > 0) {
// for consistency, we move all of the zero rows to the front
for (i = 0; i < m; i++) {
swap(B(m+dep-i), B(m-i));
if (U) swap((*U)(m+dep-i), (*U)(m-i));
}
}
// clean-up
for (i = 1; i <= m; i++) {
delete [] B1[i];
}
delete [] B1;
for (i = 1; i <= m; i++) {
delete [] mu[i];
}
delete [] mu;
delete [] c;
delete [] b;
return m;
}
long LLL_QP(mat_ZZ& B, double delta, long deep, LLLCheckFct check,
long verb)
{
verbose = verb;
NumSwaps = 0;
if (verbose) {
StartTime = GetTime();
LastTime = StartTime;
}
if (delta < 0.50 || delta >= 1) Error("LLL_QP: bad delta");
if (deep < 0) Error("LLL_QP: bad deep");
return LLL_QP(B, 0, to_quad_float(delta), deep, check);
}
long LLL_QP(mat_ZZ& B, mat_ZZ& U, double delta, long deep,
LLLCheckFct check, long verb)
{
verbose = verb;
NumSwaps = 0;
if (verbose) {
StartTime = GetTime();
LastTime = StartTime;
}
if (delta < 0.50 || delta >= 1) Error("LLL_QP: bad delta");
if (deep < 0) Error("LLL_QP: bad deep");
return LLL_QP(B, &U, to_quad_float(delta), deep, check);
}
static vec_quad_float BKZConstant;
static
void ComputeBKZConstant(long beta, long p)
{
const quad_float c_PI =
to_quad_float("3.141592653589793238462643383279502884197");
const quad_float LogPI =
to_quad_float("1.144729885849400174143427351353058711647");
BKZConstant.SetLength(beta-1);
vec_quad_float Log;
Log.SetLength(beta);
long i, j, k;
quad_float x, y;
for (j = 1; j <= beta; j++)
Log(j) = log(to_quad_float(j));
for (i = 1; i <= beta-1; i++) {
// First, we compute x = gamma(i/2)^{2/i}
k = i/2;
if ((i & 1) == 0) { // i even
x = 0;
for (j = 1; j <= k; j++)
x = x + Log(j);
x = x * (1/to_quad_float(k));
x = exp(x);
}
else { // i odd
x = 0;
for (j = k + 2; j <= 2*k + 2; j++)
x = x + Log(j);
x = 0.5*LogPI + x - 2*(k+1)*Log(2);
x = x * (2.0/to_quad_float(i));
x = exp(x);
}
// Second, we compute y = 2^{2*p/i}
y = -(2*p/to_quad_float(i))*Log(2);
y = exp(y);
BKZConstant(i) = x*y/c_PI;
}
}
static vec_quad_float BKZThresh;
static
void ComputeBKZThresh(quad_float *c, long beta)
{
BKZThresh.SetLength(beta-1);
long i;
quad_float x;
x = 0;
for (i = 1; i <= beta-1; i++) {
x += log(c[i-1]);
BKZThresh(i) = exp(x/to_quad_float(i))*BKZConstant(i);
if (!IsFinite(&BKZThresh(i))) BKZThresh(i) = 0;
}
}
static
void BKZStatus(double tt, double enum_time, unsigned long NumIterations,
unsigned long NumTrivial, unsigned long NumNonTrivial,
unsigned long NumNoOps, long m,
const mat_ZZ& B)
{
cerr << "---- BKZ_QP status ----\n";
cerr << "elapsed time: ";
PrintTime(cerr, tt-StartTime);
cerr << ", enum time: ";
PrintTime(cerr, enum_time);
cerr << ", iter: " << NumIterations << "\n";
cerr << "triv: " << NumTrivial;
cerr << ", nontriv: " << NumNonTrivial;
cerr << ", no ops: " << NumNoOps;
cerr << ", rank: " << m;
cerr << ", swaps: " << NumSwaps << "\n";
ZZ t1;
long i;
double prodlen = 0;
for (i = 1; i <= m; i++) {
InnerProduct(t1, B(i), B(i));
if (!IsZero(t1))
prodlen += log(t1);
}
cerr << "log of prod of lengths: " << prodlen/(2.0*log(2.0)) << "\n";
if (LLLDumpFile) {
cerr << "dumping to " << LLLDumpFile << "...";
ofstream f;
OpenWrite(f, LLLDumpFile);
f << "[";
for (i = 1; i <= m; i++) {
f << B(i) << "\n";
}
f << "]\n";
f.close();
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -