📄 lzz_px.h
字号:
inline zz_pX operator-(const zz_pX& a)
{ zz_pX x; negate(x, a); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX& operator++(zz_pX& x) { add(x, x, 1); return x; }
inline void operator++(zz_pX& x, int) { add(x, x, 1); }
inline zz_pX& operator--(zz_pX& x) { sub(x, x, 1); return x; }
inline void operator--(zz_pX& x, int) { sub(x, x, 1); }
/*****************************************************************
Multiplication
******************************************************************/
void mul(zz_pX& x, const zz_pX& a, const zz_pX& b);
// x = a * b
void sqr(zz_pX& x, const zz_pX& a);
inline zz_pX sqr(const zz_pX& a)
{ zz_pX x; sqr(x, a); NTL_OPT_RETURN(zz_pX, x); }
// x = a^2
void mul(zz_pX& x, const zz_pX& a, zz_p b);
inline void mul(zz_pX& x, const zz_pX& a, long b) { mul(x, a, to_zz_p(b)); }
inline void mul(zz_pX& x, zz_p a, const zz_pX& b) { mul(x, b, a); }
inline void mul(zz_pX& x, long a, const zz_pX& b) { mul(x, b, a); }
inline zz_pX operator*(const zz_pX& a, const zz_pX& b)
{ zz_pX x; mul(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX operator*(const zz_pX& a, zz_p b)
{ zz_pX x; mul(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX operator*(const zz_pX& a, long b)
{ zz_pX x; mul(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX operator*(zz_p a, const zz_pX& b)
{ zz_pX x; mul(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX operator*(long a, const zz_pX& b)
{ zz_pX x; mul(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX& operator*=(zz_pX& x, const zz_pX& b)
{ mul(x, x, b); return x; }
inline zz_pX& operator*=(zz_pX& x, zz_p b)
{ mul(x, x, b); return x; }
inline zz_pX& operator*=(zz_pX& x, long b)
{ mul(x, x, b); return x; }
void PlainMul(zz_pX& x, const zz_pX& a, const zz_pX& b);
// always uses the "classical" algorithm
void PlainSqr(zz_pX& x, const zz_pX& a);
// always uses the "classical" algorithm
void FFTMul(zz_pX& x, const zz_pX& a, const zz_pX& b);
// always uses the FFT
void FFTSqr(zz_pX& x, const zz_pX& a);
// always uses the FFT
void MulTrunc(zz_pX& x, const zz_pX& a, const zz_pX& b, long n);
// x = a * b % X^n
inline zz_pX MulTrunc(const zz_pX& a, const zz_pX& b, long n)
{ zz_pX x; MulTrunc(x, a, b, n); NTL_OPT_RETURN(zz_pX, x); }
void PlainMulTrunc(zz_pX& x, const zz_pX& a, const zz_pX& b, long n);
void FFTMulTrunc(zz_pX& x, const zz_pX& a, const zz_pX& b, long n);
void SqrTrunc(zz_pX& x, const zz_pX& a, long n);
// x = a^2 % X^n
inline zz_pX SqrTrunc(const zz_pX& a, long n)
{ zz_pX x; SqrTrunc(x, a, n); NTL_OPT_RETURN(zz_pX, x); }
void PlainSqrTrunc(zz_pX& x, const zz_pX& a, long n);
void FFTSqrTrunc(zz_pX& x, const zz_pX& a, long n);
void power(zz_pX& x, const zz_pX& a, long e);
inline zz_pX power(const zz_pX& a, long e)
{ zz_pX x; power(x, a, e); NTL_OPT_RETURN(zz_pX, x); }
// The following data structures and routines allow one
// to hand-craft various algorithms, using the FFT convolution
// algorithms directly.
// Look in the file zz_pX.c for examples.
// FFT representation of polynomials
class fftRep {
public:
long k; // a 2^k point representation
long MaxK; // maximum space allocated
long *tbl[4];
long NumPrimes;
fftRep(const fftRep&);
fftRep& operator=(const fftRep&);
void SetSize(long NewK);
fftRep() { k = MaxK = -1; NumPrimes = zz_pInfo->NumPrimes; }
fftRep(INIT_SIZE_TYPE, long InitK)
{ k = MaxK = -1; NumPrimes = zz_pInfo->NumPrimes; SetSize(InitK); }
~fftRep();
};
void TofftRep(fftRep& y, const zz_pX& x, long k, long lo, long hi);
// computes an n = 2^k point convolution of x[lo..hi].
inline void TofftRep(fftRep& y, const zz_pX& x, long k)
{ TofftRep(y, x, k, 0, deg(x)); }
void RevTofftRep(fftRep& y, const vec_zz_p& x,
long k, long lo, long hi, long offset);
// computes an n = 2^k point convolution of X^offset*x[lo..hi] mod X^n-1
// using "inverted" evaluation points.
void FromfftRep(zz_pX& x, fftRep& y, long lo, long hi);
// converts from FFT-representation to coefficient representation
// only the coefficients lo..hi are computed
// NOTE: this version destroys the data in y
// non-destructive versions of the above
void NDFromfftRep(zz_pX& x, const fftRep& y, long lo, long hi, fftRep& temp);
void NDFromfftRep(zz_pX& x, const fftRep& y, long lo, long hi);
void RevFromfftRep(vec_zz_p& x, fftRep& y, long lo, long hi);
// converts from FFT-representation to coefficient representation
// using "inverted" evaluation points.
// only the coefficients lo..hi are computed
void FromfftRep(zz_p* x, fftRep& y, long lo, long hi);
// convert out coefficients lo..hi of y, store result in x.
// no normalization is done.
// direct manipulation of FFT reps
void mul(fftRep& z, const fftRep& x, const fftRep& y);
void sub(fftRep& z, const fftRep& x, const fftRep& y);
void add(fftRep& z, const fftRep& x, const fftRep& y);
void reduce(fftRep& x, const fftRep& a, long k);
// reduces a 2^l point FFT-rep to a 2^k point FFT-rep
void AddExpand(fftRep& x, const fftRep& a);
// x = x + (an "expanded" version of a)
/*************************************************************
Division
**************************************************************/
void DivRem(zz_pX& q, zz_pX& r, const zz_pX& a, const zz_pX& b);
// q = a/b, r = a%b
void div(zz_pX& q, const zz_pX& a, const zz_pX& b);
// q = a/b
void div(zz_pX& q, const zz_pX& a, zz_p b);
inline void div(zz_pX& q, const zz_pX& a, long b)
{ div(q, a, to_zz_p(b)); }
void rem(zz_pX& r, const zz_pX& a, const zz_pX& b);
// r = a%b
long divide(zz_pX& q, const zz_pX& a, const zz_pX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
long divide(const zz_pX& a, const zz_pX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
void InvTrunc(zz_pX& x, const zz_pX& a, long m);
// computes x = a^{-1} % X^m
// constant term must be non-zero
inline zz_pX InvTrunc(const zz_pX& a, long m)
{ zz_pX x; InvTrunc(x, a, m); NTL_OPT_RETURN(zz_pX, x); }
// These always use "classical" arithmetic
void PlainDivRem(zz_pX& q, zz_pX& r, const zz_pX& a, const zz_pX& b);
void PlainDiv(zz_pX& q, const zz_pX& a, const zz_pX& b);
void PlainRem(zz_pX& r, const zz_pX& a, const zz_pX& b);
// These always use FFT arithmetic
void FFTDivRem(zz_pX& q, zz_pX& r, const zz_pX& a, const zz_pX& b);
void FFTDiv(zz_pX& q, const zz_pX& a, const zz_pX& b);
void FFTRem(zz_pX& r, const zz_pX& a, const zz_pX& b);
void PlainInvTrunc(zz_pX& x, const zz_pX& a, long m);
// always uses "classical" algorithm
// ALIAS RESTRICTION: input may not alias output
void NewtonInvTrunc(zz_pX& x, const zz_pX& a, long m);
// uses a Newton Iteration with the FFT.
// ALIAS RESTRICTION: input may not alias output
inline zz_pX operator/(const zz_pX& a, const zz_pX& b)
{ zz_pX x; div(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX operator/(const zz_pX& a, zz_p b)
{ zz_pX x; div(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX operator/(const zz_pX& a, long b)
{ zz_pX x; div(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX& operator/=(zz_pX& x, zz_p b)
{ div(x, x, b); return x; }
inline zz_pX& operator/=(zz_pX& x, long b)
{ div(x, x, b); return x; }
inline zz_pX& operator/=(zz_pX& x, const zz_pX& b)
{ div(x, x, b); return x; }
inline zz_pX operator%(const zz_pX& a, const zz_pX& b)
{ zz_pX x; rem(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX& operator%=(zz_pX& x, const zz_pX& b)
{ rem(x, x, b); return x; }
/***********************************************************
GCD's
************************************************************/
void GCD(zz_pX& x, const zz_pX& a, const zz_pX& b);
// x = GCD(a, b), x is always monic (or zero if a==b==0).
inline zz_pX GCD(const zz_pX& a, const zz_pX& b)
{ zz_pX x; GCD(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
void XGCD(zz_pX& d, zz_pX& s, zz_pX& t, const zz_pX& a, const zz_pX& b);
// d = gcd(a,b), a s + b t = d
void PlainXGCD(zz_pX& d, zz_pX& s, zz_pX& t, const zz_pX& a, const zz_pX& b);
// same as above, but uses classical algorithm
void PlainGCD(zz_pX& x, const zz_pX& a, const zz_pX& b);
// always uses "cdlassical" arithmetic
class zz_pXMatrix {
private:
zz_pXMatrix(const zz_pXMatrix&); // disable
zz_pX elts[2][2];
public:
zz_pXMatrix() { }
~zz_pXMatrix() { }
void operator=(const zz_pXMatrix&);
zz_pX& operator() (long i, long j) { return elts[i][j]; }
const zz_pX& operator() (long i, long j) const { return elts[i][j]; }
};
void HalfGCD(zz_pXMatrix& M_out, const zz_pX& U, const zz_pX& V, long d_red);
// deg(U) > deg(V), 1 <= d_red <= deg(U)+1.
//
// This computes a 2 x 2 polynomial matrix M_out such that
// M_out * (U, V)^T = (U', V')^T,
// where U', V' are consecutive polynomials in the Euclidean remainder
// sequence of U, V, and V' is the polynomial of highest degree
// satisfying deg(V') <= deg(U) - d_red.
void XHalfGCD(zz_pXMatrix& M_out, zz_pX& U, zz_pX& V, long d_red);
// same as above, except that U is replaced by U', and V by V'
/*************************************************************
Modular Arithmetic without pre-conditioning
**************************************************************/
// arithmetic mod f.
// all inputs and outputs are polynomials of degree less than deg(f).
// ASSUMPTION: f is assumed monic, and deg(f) > 0.
// NOTE: if you want to do many computations with a fixed f,
// use the zz_pXModulus data structure and associated routines below.
void MulMod(zz_pX& x, const zz_pX& a, const zz_pX& b, const zz_pX& f);
// x = (a * b) % f
inline zz_pX MulMod(const zz_pX& a, const zz_pX& b, const zz_pX& f)
{ zz_pX x; MulMod(x, a, b, f); NTL_OPT_RETURN(zz_pX, x); }
void SqrMod(zz_pX& x, const zz_pX& a, const zz_pX& f);
// x = a^2 % f
inline zz_pX SqrMod(const zz_pX& a, const zz_pX& f)
{ zz_pX x; SqrMod(x, a, f); NTL_OPT_RETURN(zz_pX, x); }
void MulByXMod(zz_pX& x, const zz_pX& a, const zz_pX& f);
// x = (a * X) mod f
inline zz_pX MulByXMod(const zz_pX& a, const zz_pX& f)
{ zz_pX x; MulByXMod(x, a, f); NTL_OPT_RETURN(zz_pX, x); }
void InvMod(zz_pX& x, const zz_pX& a, const zz_pX& f);
// x = a^{-1} % f, error is a is not invertible
inline zz_pX InvMod(const zz_pX& a, const zz_pX& f)
{ zz_pX x; InvMod(x, a, f); NTL_OPT_RETURN(zz_pX, x); }
long InvModStatus(zz_pX& x, const zz_pX& a, const zz_pX& f);
// if (a, f) = 1, returns 0 and sets x = a^{-1} % f
// otherwise, returns 1 and sets x = (a, f)
/******************************************************************
Modular Arithmetic with Pre-conditioning
*******************************************************************/
// If you need to do a lot of arithmetic modulo a fixed f,
// build zz_pXModulus F for f. This pre-computes information about f
// that speeds up the computation a great deal.
class zz_pXModulus {
public:
zz_pXModulus() : UseFFT(0), n(-1) { }
~zz_pXModulus() { }
zz_pX f; // the modulus
long UseFFT;// flag indicating whether FFT should be used.
long n; // n = deg(f)
long k; // least k s/t 2^k >= n
long l; // least l s/t 2^l >= 2n-3
fftRep FRep; // 2^k point rep of f
// H = rev((rev(f))^{-1} rem X^{n-1})
fftRep HRep; // 2^l point rep of H
vec_zz_p tracevec; // mutable
zz_pXModulus(const zz_pX& ff);
operator const zz_pX& () const { return f; }
const zz_pX& val() const { return f; }
};
inline long deg(const zz_pXModulus& F) { return F.n; }
void build(zz_pXModulus& F, const zz_pX& f);
// deg(f) > 0
void rem21(zz_pX& x, const zz_pX& a, const zz_pXModulus& F);
// x = a % f
// deg(a) <= 2(n-1), where n = F.n = deg(f)
void rem(zz_pX& x, const zz_pX& a, const zz_pXModulus& F);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -