📄 lzz_px.h
字号:
#ifndef NTL_zz_pX__H
#define NTL_zz_pX__H
#include <NTL/vector.h>
#include <NTL/lzz_p.h>
#include <NTL/vec_lzz_p.h>
NTL_OPEN_NNS
// some cross-over points
#define NTL_zz_pX_MOD_CROSSOVER (zz_pX_mod_crossover[zz_pInfo->PrimeCnt])
#define NTL_zz_pX_MUL_CROSSOVER (zz_pX_mul_crossover[zz_pInfo->PrimeCnt])
#define NTL_zz_pX_NEWTON_CROSSOVER (zz_pX_newton_crossover[zz_pInfo->PrimeCnt])
#define NTL_zz_pX_DIV_CROSSOVER (zz_pX_div_crossover[zz_pInfo->PrimeCnt])
#define NTL_zz_pX_HalfGCD_CROSSOVER (zz_pX_halfgcd_crossover[zz_pInfo->PrimeCnt])
#define NTL_zz_pX_GCD_CROSSOVER (zz_pX_gcd_crossover[zz_pInfo->PrimeCnt])
#define NTL_zz_pX_BERMASS_CROSSOVER (zz_pX_bermass_crossover[zz_pInfo->PrimeCnt])
#define NTL_zz_pX_TRACE_CROSSOVER (zz_pX_trace_crossover[zz_pInfo->PrimeCnt])
extern long zz_pX_mod_crossover[];
extern long zz_pX_mul_crossover[];
extern long zz_pX_newton_crossover[];
extern long zz_pX_div_crossover[];
extern long zz_pX_halfgcd_crossover[];
extern long zz_pX_gcd_crossover[];
extern long zz_pX_bermass_crossover[];
extern long zz_pX_trace_crossover[];
/************************************************************
zz_pX
The class zz_pX implements polynomial arithmetic modulo p.
Polynomials are represented as vec_zz_p's.
If f is a zz_pX, then f.rep is a vec_zz_p.
The zero polynomial is represented as a zero length vector.
Otherwise. f.rep[0] is the constant-term, and f.rep[f.rep.length()-1]
is the leading coefficient, which is always non-zero.
The member f.rep is public, so the vector representation is fully
accessible.
Use the member function normalize() to strip leading zeros.
**************************************************************/
class zz_pX {
public:
vec_zz_p rep;
typedef vec_zz_p VectorBaseType;
public:
/***************************************************************
Constructors, Destructors, and Assignment
****************************************************************/
zz_pX()
// initial value 0
{ }
zz_pX(INIT_SIZE_TYPE, long n) { rep.SetMaxLength(n); }
zz_pX(const zz_pX& a) : rep(a.rep) { }
// initial value is a
inline zz_pX(long i, zz_p c);
inline zz_pX(long i, long c);
zz_pX& operator=(const zz_pX& a)
{ rep = a.rep; return *this; }
inline zz_pX& operator=(long a);
inline zz_pX& operator=(zz_p a);
~zz_pX() { }
void normalize();
// strip leading zeros
void SetMaxLength(long n)
// pre-allocate space for n coefficients.
// Value is unchanged
{ rep.SetMaxLength(n); }
void kill()
// free space held by this polynomial. Value becomes 0.
{ rep.kill(); }
static const zz_pX& zero();
zz_pX(zz_pX& x, INIT_TRANS_TYPE) : rep(x.rep, INIT_TRANS) { }
};
/********************************************************************
input and output
I/O format:
[a_0 a_1 ... a_n],
represents the polynomial a_0 + a_1*X + ... + a_n*X^n.
On output, all coefficients will be integers between 0 and p-1,
amd a_n not zero (the zero polynomial is [ ]).
On input, the coefficients are arbitrary integers which are
then reduced modulo p, and leading zeros stripped.
*********************************************************************/
NTL_SNS istream& operator>>(NTL_SNS istream& s, zz_pX& x);
NTL_SNS ostream& operator<<(NTL_SNS ostream& s, const zz_pX& a);
/**********************************************************
Some utility routines
***********************************************************/
inline long deg(const zz_pX& a) { return a.rep.length() - 1; }
// degree of a polynomial.
// note that the zero polynomial has degree -1.
zz_p coeff(const zz_pX& a, long i);
// zero if i not in range
void GetCoeff(zz_p& x, const zz_pX& a, long i);
// x = a[i], or zero if i not in range
zz_p LeadCoeff(const zz_pX& a);
// zero if a == 0
zz_p ConstTerm(const zz_pX& a);
// zero if a == 0
void SetCoeff(zz_pX& x, long i, zz_p a);
// x[i] = a, error is raised if i < 0
void SetCoeff(zz_pX& x, long i, long a);
inline zz_pX::zz_pX(long i, zz_p a)
{ SetCoeff(*this, i, a); }
inline zz_pX::zz_pX(long i, long a)
{ SetCoeff(*this, i, a); }
void SetCoeff(zz_pX& x, long i);
// x[i] = 1, error is raised if i < 0
void SetX(zz_pX& x);
// x is set to the monomial X
long IsX(const zz_pX& a);
// test if x = X
inline void clear(zz_pX& x)
// x = 0
{ x.rep.SetLength(0); }
inline void set(zz_pX& x)
// x = 1
{ x.rep.SetLength(1); set(x.rep[0]); }
inline void swap(zz_pX& x, zz_pX& y)
// swap x & y (only pointers are swapped)
{ swap(x.rep, y.rep); }
void random(zz_pX& x, long n);
inline zz_pX random_zz_pX(long n)
{ zz_pX x; random(x, n); NTL_OPT_RETURN(zz_pX, x); }
// generate a random polynomial of degree < n
void trunc(zz_pX& x, const zz_pX& a, long m);
// x = a % X^m
inline zz_pX trunc(const zz_pX& a, long m)
{ zz_pX x; trunc(x, a, m); NTL_OPT_RETURN(zz_pX, x); }
void RightShift(zz_pX& x, const zz_pX& a, long n);
// x = a/X^n
inline zz_pX RightShift(const zz_pX& a, long n)
{ zz_pX x; RightShift(x, a, n); NTL_OPT_RETURN(zz_pX, x); }
void LeftShift(zz_pX& x, const zz_pX& a, long n);
// x = a*X^n
inline zz_pX LeftShift(const zz_pX& a, long n)
{ zz_pX x; LeftShift(x, a, n); NTL_OPT_RETURN(zz_pX, x); }
#ifndef NTL_TRANSITION
inline zz_pX operator>>(const zz_pX& a, long n)
{ zz_pX x; RightShift(x, a, n); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX operator<<(const zz_pX& a, long n)
{ zz_pX x; LeftShift(x, a, n); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX& operator<<=(zz_pX& x, long n)
{ LeftShift(x, x, n); return x; }
inline zz_pX& operator>>=(zz_pX& x, long n)
{ RightShift(x, x, n); return x; }
#endif
void diff(zz_pX& x, const zz_pX& a);
// x = derivative of a
inline zz_pX diff(const zz_pX& a)
{ zz_pX x; diff(x, a); NTL_OPT_RETURN(zz_pX, x); }
void MakeMonic(zz_pX& x);
// makes x monic
void reverse(zz_pX& c, const zz_pX& a, long hi);
inline zz_pX reverse(const zz_pX& a, long hi)
{ zz_pX x; reverse(x, a, hi); NTL_OPT_RETURN(zz_pX, x); }
inline void reverse(zz_pX& c, const zz_pX& a)
{ reverse(c, a, deg(a)); }
inline zz_pX reverse(const zz_pX& a)
{ zz_pX x; reverse(x, a); NTL_OPT_RETURN(zz_pX, x); }
inline void VectorCopy(vec_zz_p& x, const zz_pX& a, long n)
{ VectorCopy(x, a.rep, n); }
inline vec_zz_p VectorCopy(const zz_pX& a, long n)
{ return VectorCopy(a.rep, n); }
/*******************************************************************
conversion routines
********************************************************************/
void conv(zz_pX& x, long a);
inline zz_pX to_zz_pX(long a)
{ zz_pX x; conv(x, a); NTL_OPT_RETURN(zz_pX, x); }
void conv(zz_pX& x, const ZZ& a);
inline zz_pX to_zz_pX(const ZZ& a)
{ zz_pX x; conv(x, a); NTL_OPT_RETURN(zz_pX, x); }
void conv(zz_pX& x, zz_p a);
inline zz_pX to_zz_pX(zz_p a)
{ zz_pX x; conv(x, a); NTL_OPT_RETURN(zz_pX, x); }
void conv(zz_pX& x, const vec_zz_p& a);
inline zz_pX to_zz_pX(const vec_zz_p& a)
{ zz_pX x; conv(x, a); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX& zz_pX::operator=(zz_p a)
{ conv(*this, a); return *this; }
inline zz_pX& zz_pX::operator=(long a)
{ conv(*this, a); return *this; }
/*************************************************************
Comparison
**************************************************************/
long IsZero(const zz_pX& a);
long IsOne(const zz_pX& a);
inline long operator==(const zz_pX& a, const zz_pX& b)
{
return a.rep == b.rep;
}
inline long operator!=(const zz_pX& a, const zz_pX& b)
{ return !(a == b); }
long operator==(const zz_pX& a, long b);
long operator==(const zz_pX& a, zz_p b);
inline long operator==(long a, const zz_pX& b) { return b == a; }
inline long operator==(zz_p a, const zz_pX& b) { return b == a; }
inline long operator!=(const zz_pX& a, long b) { return !(a == b); }
inline long operator!=(const zz_pX& a, zz_p b) { return !(a == b); }
inline long operator!=(long a, const zz_pX& b) { return !(a == b); }
inline long operator!=(zz_p a, const zz_pX& b) { return !(a == b); }
/***************************************************************
Addition
****************************************************************/
void add(zz_pX& x, const zz_pX& a, const zz_pX& b);
// x = a + b
void sub(zz_pX& x, const zz_pX& a, const zz_pX& b);
// x = a - b
void negate(zz_pX& x, const zz_pX& a);
// x = -a
// scalar versions
void add(zz_pX & x, const zz_pX& a, zz_p b); // x = a + b
inline void add(zz_pX& x, const zz_pX& a, long b) { add(x, a, to_zz_p(b)); }
inline void add(zz_pX& x, zz_p a, const zz_pX& b) { add(x, b, a); }
inline void add(zz_pX& x, long a, const zz_pX& b) { add(x, b, a); }
void sub(zz_pX & x, const zz_pX& a, zz_p b); // x = a - b
inline void sub(zz_pX& x, const zz_pX& a, long b) { sub(x, a, to_zz_p(b)); }
void sub(zz_pX& x, zz_p a, const zz_pX& b);
inline void sub(zz_pX& x, long a, const zz_pX& b) { sub(x, to_zz_p(a), b); }
inline zz_pX operator+(const zz_pX& a, const zz_pX& b)
{ zz_pX x; add(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX operator+(const zz_pX& a, zz_p b)
{ zz_pX x; add(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX operator+(const zz_pX& a, long b)
{ zz_pX x; add(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX operator+(zz_p a, const zz_pX& b)
{ zz_pX x; add(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX operator+(long a, const zz_pX& b)
{ zz_pX x; add(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX operator-(const zz_pX& a, const zz_pX& b)
{ zz_pX x; sub(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX operator-(const zz_pX& a, zz_p b)
{ zz_pX x; sub(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX operator-(const zz_pX& a, long b)
{ zz_pX x; sub(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX operator-(zz_p a, const zz_pX& b)
{ zz_pX x; sub(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX operator-(long a, const zz_pX& b)
{ zz_pX x; sub(x, a, b); NTL_OPT_RETURN(zz_pX, x); }
inline zz_pX& operator+=(zz_pX& x, const zz_pX& b)
{ add(x, x, b); return x; }
inline zz_pX& operator+=(zz_pX& x, zz_p b)
{ add(x, x, b); return x; }
inline zz_pX& operator+=(zz_pX& x, long b)
{ add(x, x, b); return x; }
inline zz_pX& operator-=(zz_pX& x, const zz_pX& b)
{ sub(x, x, b); return x; }
inline zz_pX& operator-=(zz_pX& x, zz_p b)
{ sub(x, x, b); return x; }
inline zz_pX& operator-=(zz_pX& x, long b)
{ sub(x, x, b); return x; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -