📄 leja.m
字号:
function [x_out] = leja(x_in)% function [x_out] = leja(x_in)%% Input: x_in%% Output: x_out%% Program orders the values x_in (supposed to be the roots of a % polynomial) in this way that computing the polynomial coefficients% by using the m-file poly yields numerically accurate results.% Try, e.g., % z=exp(j*(1:100)*2*pi/100);% and compute % p1 = poly(z);% p2 = poly(leja(z));% which both should lead to the polynomial x^100-1. You will be% surprised!%%%File Name: leja.m%Last Modification Date: %G% %U%%Current Version: %M% %I%%File Creation Date: Mon Nov 8 09:53:56 1993%Author: Markus Lang <lang@dsp.rice.edu>%%Copyright: All software, documentation, and related files in this distribution% are Copyright (c) 1993 Rice University%%Permission is granted for use and non-profit distribution providing that this%notice be clearly maintained. The right to distribute any portion for profit%or as part of any commercial product is specifically reserved for the author.%%Change History:%x = x_in(:).'; n = length(x);a = x(ones(1,n+1),:);a(1,:) = abs(a(1,:));[dum1,ind] = max(a(1,1:n)); if ind~=1 dum2 = a(:,1); a(:,1) = a(:,ind); a(:,ind) = dum2;endx_out(1) = a(n,1);a(2,2:n) = abs(a(2,2:n)-x_out(1));for l=2:n-1 [dum1,ind] = max(prod(a(1:l,l:n))); ind = ind+l-1; if l~=ind dum2 = a(:,l); a(:,l) = a(:,ind); a(:,ind) = dum2; end x_out(l) = a(n,l); a(l+1,(l+1):n) = abs(a(l+1,(l+1):n)-x_out(l));endx_out = a(n+1,:);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -