📄 remez.cpp
字号:
{
if (fabs(E[foundExt[k-1]]) < fabs(E[foundExt[0]]))
l = foundExt[k-1]; /* Delete last extremal */
else
l = foundExt[0]; /* Delete first extremal */
}
for (j=l; j<k; j++) /* Loop that does the deletion */
{
foundExt[j] = foundExt[j+1];
}
k--;
extra--;
}
for (i=0; i<=r; i++)
{
Ext[i] = foundExt[i]; /* Copy found extremals to Ext[] */
}
free(foundExt);
}
/*********************
* FreqSample
*============
* Simple frequency sampling algorithm to determine the impulse
* response h[] from A's found in ComputeA
*
*
* INPUT:
* ------
* int N - Number of filter coefficients
* double A[] - Sample points of desired response [N/2]
* int symmetry - Symmetry of desired filter
*
* OUTPUT:
* -------
* double h[] - Impulse Response of final filter [N]
*********************/
void FreqSample(int N, double A[], double h[], int symm)
{
int n, k;
double x, val, M;
M = (N-1.0)/2.0;
if (symm == POSITIVE)
{
if (N%2)
{
for (n=0; n<N; n++)
{
val = A[0];
x = Pi2 * (n - M)/N;
for (k=1; k<=M; k++)
val += 2.0 * A[k] * cos(x*k);
h[n] = val/N;
}
}
else
{
for (n=0; n<N; n++)
{
val = A[0];
x = Pi2 * (n - M)/N;
for (k=1; k<=(N/2-1); k++)
val += 2.0 * A[k] * cos(x*k);
h[n] = val/N;
}
}
}
else
{
if (N%2)
{
for (n=0; n<N; n++)
{
val = 0;
x = Pi2 * (n - M)/N;
for (k=1; k<=M; k++)
val += 2.0 * A[k] * sin(x*k);
h[n] = val/N;
}
}
else
{
for (n=0; n<N; n++)
{
val = A[N/2] * sin(Pi * (n - M));
x = Pi2 * (n - M)/N;
for (k=1; k<=(N/2-1); k++)
val += 2.0 * A[k] * sin(x*k);
h[n] = val/N;
}
}
}
}
/*******************
* isDone
*========
* Checks to see if the error function is small enough to consider
* the result to have converged.
*
* INPUT:
* ------
* int r - 1/2 the number of filter coeffiecients
* int Ext[] - Indexes to extremal frequencies [r+1]
* double E[] - Error function on the dense grid [gridsize]
*
* OUTPUT:
* -------
* Returns 1 if the result converged
* Returns 0 if the result has not converged
********************/
short isDone(int r, int Ext[], double E[])
{
int i;
double min, max, current;
min = max = fabs(E[Ext[0]]);
for (i=1; i<=r; i++)
{
current = fabs(E[Ext[i]]);
if (current < min)
min = current;
if (current > max)
max = current;
}
if (((max-min)/max) < 0.0001)
return 1;
return 0;
}
/********************
* remez
*=======
* Calculates the optimal (in the Chebyshev/minimax sense)
* FIR filter impulse response given a set of band edges,
* the desired reponse on those bands, and the weight given to
* the error in those bands.
*
* INPUT:
* ------
* int numtaps - Number of filter coefficients
* int numband - Number of bands in filter specification
* double bands[] - User-specified band edges [2 * numband]
* double des[] - User-specified band responses [numband]
* double weight[] - User-specified error weights [numband]
* int type - Type of filter
* char freqresp_filename - Name of file to write frequency response to
* int freqresp_points - Number of frequencies to write to file
*
* OUTPUT:
* -------
* double h[] - Impulse response of final filter [numtaps]
*
* Return value:
* 0 indicates success
* -1 indicates failure to converge
********************/
int remez(double h[], int numtaps,
int numband, double bands[], double des[], double weight[],
int type, char* freqresp_filename, int freqresp_points)
{
double *Grid, *W, *D, *E;
int i, iter, gridsize, r, *Ext;
double *taps, c;
double *x, *y, *ad;
int symmetry;
if (type == BANDPASS)
symmetry = POSITIVE;
else
symmetry = NEGATIVE;
r = numtaps/2; /* number of extrema */
if ((numtaps%2) && (symmetry == POSITIVE))
r++;
/*
* Predict dense grid size in advance for memory allocation
* .5 is so we round up, not truncate
*/
gridsize = 0;
for (i=0; i<numband; i++)
{
gridsize += (int)(2*r*GRIDDENSITY*(bands[2*i+1] - bands[2*i]) + .5);
}
if (symmetry == NEGATIVE)
{
gridsize--;
}
/*
* Dynamically allocate memory for arrays with proper sizes
*/
Grid = (double *)malloc(gridsize * sizeof(double));
D = (double *)malloc(gridsize * sizeof(double));
W = (double *)malloc(gridsize * sizeof(double));
E = (double *)malloc(gridsize * sizeof(double));
Ext = (int *)malloc((r+1) * sizeof(int));
taps = (double *)malloc((r+1) * sizeof(double));
x = (double *)malloc((r+1) * sizeof(double));
y = (double *)malloc((r+1) * sizeof(double));
ad = (double *)malloc((r+1) * sizeof(double));
/*
* Create dense frequency grid
*/
CreateDenseGrid(r, numtaps, numband, bands, des, weight,
&gridsize, Grid, D, W, symmetry);
InitialGuess(r, Ext, gridsize);
/*
* For Differentiator: (fix grid)
*/
if (type == DIFFERENTIATOR)
{
for (i=0; i<gridsize; i++)
{
/* D[i] = D[i]*Grid[i]; */
if (D[i] > 0.0001)
W[i] = W[i]/Grid[i];
}
}
/*
* For odd or Negative symmetry filters, alter the
* D[] and W[] according to Parks McClellan
*/
if (symmetry == POSITIVE)
{
if (numtaps % 2 == 0)
{
for (i=0; i<gridsize; i++)
{
c = cos(Pi * Grid[i]);
D[i] /= c;
W[i] *= c;
}
}
}
else
{
if (numtaps % 2)
{
for (i=0; i<gridsize; i++)
{
c = sin(Pi2 * Grid[i]);
D[i] /= c;
W[i] *= c;
}
}
else
{
for (i=0; i<gridsize; i++)
{
c = sin(Pi * Grid[i]);
D[i] /= c;
W[i] *= c;
}
}
}
/*
* Perform the Remez Exchange algorithm
*/
for (iter=0; iter<MAXITERATIONS; iter++)
{
CalcParms(r, Ext, Grid, D, W, ad, x, y);
CalcError(r, ad, x, y, gridsize, Grid, D, W, E);
Search(r, Ext, gridsize, E);
if (isDone(r, Ext, E))
break;
}
if (iter == MAXITERATIONS)
{
return -1; /* Failure to converge */
}
CalcParms(r, Ext, Grid, D, W, ad, x, y);
/*
* Find the 'taps' of the filter for use with Frequency
* Sampling. If odd or Negative symmetry, fix the taps
* according to Parks McClellan
*/
for (i=0; i<=numtaps/2; i++)
{
if (symmetry == POSITIVE)
{
if (numtaps%2)
c = 1;
else
c = cos(Pi * (double)i/numtaps);
}
else
{
if (numtaps%2)
c = sin(Pi2 * (double)i/numtaps);
else
c = sin(Pi * (double)i/numtaps);
}
taps[i] = ComputeA((double)i/numtaps, r, ad, x, y)*c;
}
/*
* If requested, write frequency response data to a file
*/
if (freqresp_filename)
{
FILE* iov = fopen(freqresp_filename, "w");
if (iov)
{
fprintf(iov, "Frequency, Amplitude, Amp_dB\n");
for (i=0; i<freqresp_points; i++)
{
double freq = i * 0.5 / (freqresp_points-1);
if (symmetry == POSITIVE)
{
if (numtaps%2)
c = 1;
else
c = cos(Pi * freq);
}
else
{
if (numtaps%2)
c = sin(Pi2 * freq);
else
c = sin(Pi * freq);
}
double resp = ComputeA(freq, r, ad, x, y)*c;
double log_resp = -300;
if (fabs(resp) > 1e-15)
log_resp = 20*log10(fabs(resp));
fprintf(iov, "%le, %le, %le\n", 2*freq, resp, log_resp);
}
fclose(iov);
}
else
fprintf(stderr,
"ERROR: Unable to open frequency response output file\n");
}
/*
* Frequency sampling design with calculated taps
*/
FreqSample(numtaps, taps, h, symmetry);
/*
* If this is a differentiator, signs of coefficients must be reversed
*/
if (type == DIFFERENTIATOR)
for (i=0; i<numtaps; i++)
h[i] = -h[i];
/*
* Delete allocated memory
*/
free(Grid);
free(W);
free(D);
free(E);
free(Ext);
free(x);
free(y);
free(ad);
return 0; /* Indicate success */
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -