📄 remez.cpp
字号:
/**************************************************************************
* Parks-McClellan algorithm for FIR filter design (C version)
*-------------------------------------------------
* Copyright (c) 1995,1998 Jake Janovetz (janovetz@uiuc.edu)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*************************************************************************/
#include "remez.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
/*******************
* CreateDenseGrid
*=================
* Creates the dense grid of frequencies from the specified bands.
* Also creates the Desired Frequency Response function (D[]) and
* the Weight function (W[]) on that dense grid
*
*
* INPUT:
* ------
* int r - 1/2 the number of filter coefficients
* int numtaps - Number of taps in the resulting filter
* int numband - Number of bands in user specification
* double bands[] - User-specified band edges [2*numband]
* double des[] - Desired response per band [numband]
* double weight[] - Weight per band [numband]
* int symmetry - Symmetry of filter - used for grid check
*
* OUTPUT:
* -------
* int gridsize - Number of elements in the dense frequency grid
* double Grid[] - Frequencies (0 to 0.5) on the dense grid [gridsize]
* double D[] - Desired response on the dense grid [gridsize]
* double W[] - Weight function on the dense grid [gridsize]
*******************/
void CreateDenseGrid(int r, int numtaps, int numband, double bands[],
double des[], double weight[], int *gridsize,
double Grid[], double D[], double W[],
int symmetry)
{
int i, j, k, band;
double delf, lowf, highf;
delf = 0.5/(GRIDDENSITY*r);
/*
* For differentiator, hilbert,
* symmetry is odd and Grid[0] = max(delf, band[0])
*/
if ((symmetry == NEGATIVE) && (delf > bands[0]))
bands[0] = delf;
j=0;
for (band=0; band < numband; band++)
{
Grid[j] = bands[2*band];
lowf = bands[2*band];
highf = bands[2*band + 1];
k = (int)((highf - lowf)/delf + 0.5); /* .5 for rounding */
for (i=0; i<k; i++)
{
D[j] = des[band];
W[j] = weight[band];
Grid[j] = lowf;
lowf += delf;
j++;
}
Grid[j-1] = highf;
}
/*
* Similar to above, if odd symmetry, last grid point can't be .5
* - but, if there are even taps, leave the last grid point at .5
*/
if ((symmetry == NEGATIVE) &&
(Grid[*gridsize-1] > (0.5 - delf)) &&
(numtaps % 2))
{
Grid[*gridsize-1] = 0.5-delf;
}
}
/********************
* InitialGuess
*==============
* Places Extremal Frequencies evenly throughout the dense grid.
*
*
* INPUT:
* ------
* int r - 1/2 the number of filter coefficients
* int gridsize - Number of elements in the dense frequency grid
*
* OUTPUT:
* -------
* int Ext[] - Extremal indexes to dense frequency grid [r+1]
********************/
void InitialGuess(int r, int Ext[], int gridsize)
{
int i;
for (i=0; i<=r; i++)
Ext[i] = i * (gridsize-1) / r;
}
/***********************
* CalcParms
*===========
*
*
* INPUT:
* ------
* int r - 1/2 the number of filter coefficients
* int Ext[] - Extremal indexes to dense frequency grid [r+1]
* double Grid[] - Frequencies (0 to 0.5) on the dense grid [gridsize]
* double D[] - Desired response on the dense grid [gridsize]
* double W[] - Weight function on the dense grid [gridsize]
*
* OUTPUT:
* -------
* double ad[] - 'b' in Oppenheim & Schafer [r+1]
* double x[] - [r+1]
* double y[] - 'C' in Oppenheim & Schafer [r+1]
***********************/
void CalcParms(int r, int Ext[], double Grid[], double D[], double W[],
double ad[], double x[], double y[])
{
int i, j, k, ld;
double sign, xi, delta, denom, numer;
/*
* Find x[]
*/
for (i=0; i<=r; i++)
x[i] = cos(Pi2 * Grid[Ext[i]]);
/*
* Calculate ad[] - Oppenheim & Schafer eq 7.132
*/
ld = (r-1)/15 + 1; /* Skips around to avoid round errors */
for (i=0; i<=r; i++)
{
denom = 1.0;
xi = x[i];
for (j=0; j<ld; j++)
{
for (k=j; k<=r; k+=ld)
if (k != i)
denom *= 2.0*(xi - x[k]);
}
if (fabs(denom)<0.00001)
denom = 0.00001;
ad[i] = 1.0/denom;
}
/*
* Calculate delta - Oppenheim & Schafer eq 7.131
*/
numer = denom = 0;
sign = 1;
for (i=0; i<=r; i++)
{
numer += ad[i] * D[Ext[i]];
denom += sign * ad[i]/W[Ext[i]];
sign = -sign;
}
delta = numer/denom;
sign = 1;
/*
* Calculate y[] - Oppenheim & Schafer eq 7.133b
*/
for (i=0; i<=r; i++)
{
y[i] = D[Ext[i]] - sign * delta/W[Ext[i]];
sign = -sign;
}
}
/*********************
* ComputeA
*==========
* Using values calculated in CalcParms, ComputeA calculates the
* actual filter response at a given frequency (freq). Uses
* eq 7.133a from Oppenheim & Schafer.
*
*
* INPUT:
* ------
* double freq - Frequency (0 to 0.5) at which to calculate A
* int r - 1/2 the number of filter coefficients
* double ad[] - 'b' in Oppenheim & Schafer [r+1]
* double x[] - [r+1]
* double y[] - 'C' in Oppenheim & Schafer [r+1]
*
* OUTPUT:
* -------
* Returns double value of A[freq]
*********************/
double ComputeA(double freq, int r, double ad[], double x[], double y[])
{
int i;
double xc, c, denom, numer;
denom = numer = 0;
xc = cos(Pi2 * freq);
for (i=0; i<=r; i++)
{
c = xc - x[i];
if (fabs(c) < 1.0e-7)
{
numer = y[i];
denom = 1;
break;
}
c = ad[i]/c;
denom += c;
numer += c*y[i];
}
return numer/denom;
}
/************************
* CalcError
*===========
* Calculates the Error function from the desired frequency response
* on the dense grid (D[]), the weight function on the dense grid (W[]),
* and the present response calculation (A[])
*
*
* INPUT:
* ------
* int r - 1/2 the number of filter coefficients
* double ad[] - [r+1]
* double x[] - [r+1]
* double y[] - [r+1]
* int gridsize - Number of elements in the dense frequency grid
* double Grid[] - Frequencies on the dense grid [gridsize]
* double D[] - Desired response on the dense grid [gridsize]
* double W[] - Weight function on the desnse grid [gridsize]
*
* OUTPUT:
* -------
* double E[] - Error function on dense grid [gridsize]
************************/
void CalcError(int r, double ad[], double x[], double y[],
int gridsize, double Grid[],
double D[], double W[], double E[])
{
int i;
double A;
for (i=0; i<gridsize; i++)
{
A = ComputeA(Grid[i], r, ad, x, y);
E[i] = W[i] * (D[i] - A);
}
}
/************************
* Search
*========
* Searches for the maxima/minima of the error curve. If more than
* r+1 extrema are found, it uses the following heuristic (thanks
* Chris Hanson):
* 1) Adjacent non-alternating extrema deleted first.
* 2) If there are more than one excess extrema, delete the
* one with the smallest error. This will create a non-alternation
* condition that is fixed by 1).
* 3) If there is exactly one excess extremum, delete the smaller
* of the first/last extremum
*
*
* INPUT:
* ------
* int r - 1/2 the number of filter coefficients
* int Ext[] - Indexes to Grid[] of extremal frequencies [r+1]
* int gridsize - Number of elements in the dense frequency grid
* double E[] - Array of error values. [gridsize]
* OUTPUT:
* -------
* int Ext[] - New indexes to extremal frequencies [r+1]
************************/
void Search(int r, int Ext[],
int gridsize, double E[])
{
int i, j, k, l, extra; /* Counters */
int up, alt;
int *foundExt; /* Array of found extremals */
/*
* Allocate enough space for found extremals.
*/
foundExt = (int *)malloc((10*r) * sizeof(int));
k = 0;
/*
* Check for extremum at 0.
*/
if (((E[0]>0.0) && (E[0]>E[1])) ||
((E[0]<0.0) && (E[0]<E[1])))
foundExt[k++] = 0;
/*
* Check for extrema inside dense grid
*/
for (i=1; i<gridsize-1; i++)
{
if (((E[i]>=E[i-1]) && (E[i]>E[i+1]) && (E[i]>0.0)) ||
((E[i]<=E[i-1]) && (E[i]<E[i+1]) && (E[i]<0.0)))
foundExt[k++] = i;
}
/*
* Check for extremum at 0.5
*/
j = gridsize-1;
if (((E[j]>0.0) && (E[j]>E[j-1])) ||
((E[j]<0.0) && (E[j]<E[j-1])))
foundExt[k++] = j;
/*
* Remove extra extremals
*/
extra = k - (r+1);
while (extra > 0)
{
if (E[foundExt[0]] > 0.0)
up = 1; /* first one is a maxima */
else
up = 0; /* first one is a minima */
l=0;
alt = 1;
for (j=1; j<k; j++)
{
if (fabs(E[foundExt[j]]) < fabs(E[foundExt[l]]))
l = j; /* new smallest error. */
if ((up) && (E[foundExt[j]] < 0.0))
up = 0; /* switch to a minima */
else if ((!up) && (E[foundExt[j]] > 0.0))
up = 1; /* switch to a maxima */
else
{
alt = 0;
break; /* Ooops, found two non-alternating */
} /* extrema. Delete smallest of them */
} /* if the loop finishes, all extrema are alternating */
/*
* If there's only one extremal and all are alternating,
* delete the smallest of the first/last extremals.
*/
if ((alt) && (extra == 1))
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -