⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 addrs.h

📁 鼎力推荐!本程序是基于嵌入式LUNUX系统开发的源程序代码
💻 H
字号:
/* * This file is subject to the terms and conditions of the GNU General Public * License.  See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 1992-1999,2001-2004 Silicon Graphics, Inc. All rights reserved. */#ifndef _ASM_IA64_SN_ADDRS_H#define _ASM_IA64_SN_ADDRS_H#include <asm/percpu.h>#include <asm/sn/types.h>#include <asm/sn/pda.h>/* *  Memory/SHUB Address Format: *  +-+---------+--+--------------+ *  |0|  NASID  |AS| NodeOffset   | *  +-+---------+--+--------------+ * *  NASID: (low NASID bit is 0) Memory and SHUB MMRs *   AS: 2-bit Address Space Identifier. Used only if low NASID bit is 0 *     00: Local Resources and MMR space *           Top bit of NodeOffset *               0: Local resources space *                  node id: *                        0: IA64/NT compatibility space *                        2: Local MMR Space *                        4: Local memory, regardless of local node id *               1: Global MMR space *     01: GET space. *     10: AMO space. *     11: Cacheable memory space. * *   NodeOffset: byte offset * * *  TIO address format: *  +-+----------+--+--------------+ *  |0|  NASID   |AS| Nodeoffset   | *  +-+----------+--+--------------+ * *  NASID: (low NASID bit is 1) TIO *   AS: 2-bit Chiplet Identifier *     00: TIO LB (Indicates TIO MMR access.) *     01: TIO ICE (indicates coretalk space access.) *  *   NodeOffset: top bit must be set. * * * Note that in both of the above address formats, the low * NASID bit indicates if the reference is to the SHUB or TIO MMRs. *//* * Define basic shift & mask constants for manipulating NASIDs and AS values. */#define NASID_BITMASK		(pda->nasid_bitmask)#define NASID_SHIFT		(pda->nasid_shift)#define AS_SHIFT		(pda->as_shift)#define AS_BITMASK		0x3UL#define NASID_MASK              ((u64)NASID_BITMASK << NASID_SHIFT)#define AS_MASK			((u64)AS_BITMASK << AS_SHIFT)#define REGION_BITS		0xe000000000000000UL/* * AS values. These are the same on both SHUB1 & SHUB2. */#define AS_GET_VAL		1UL#define AS_AMO_VAL		2UL#define AS_CAC_VAL		3UL#define AS_GET_SPACE		(AS_GET_VAL << AS_SHIFT)#define AS_AMO_SPACE		(AS_AMO_VAL << AS_SHIFT)#define AS_CAC_SPACE		(AS_CAC_VAL << AS_SHIFT)/* * Base addresses for various address ranges. */#define CACHED			0xe000000000000000UL#define UNCACHED                0xc000000000000000UL#define UNCACHED_PHYS           0x8000000000000000UL/*  * Virtual Mode Local & Global MMR space.   */#define SH1_LOCAL_MMR_OFFSET	0x8000000000UL#define SH2_LOCAL_MMR_OFFSET	0x0200000000UL#define LOCAL_MMR_OFFSET	(is_shub2() ? SH2_LOCAL_MMR_OFFSET : SH1_LOCAL_MMR_OFFSET)#define LOCAL_MMR_SPACE		(UNCACHED | LOCAL_MMR_OFFSET)#define LOCAL_PHYS_MMR_SPACE	(UNCACHED_PHYS | LOCAL_MMR_OFFSET)#define SH1_GLOBAL_MMR_OFFSET	0x0800000000UL#define SH2_GLOBAL_MMR_OFFSET	0x0300000000UL#define GLOBAL_MMR_OFFSET	(is_shub2() ? SH2_GLOBAL_MMR_OFFSET : SH1_GLOBAL_MMR_OFFSET)#define GLOBAL_MMR_SPACE	(UNCACHED | GLOBAL_MMR_OFFSET)/* * Physical mode addresses */#define GLOBAL_PHYS_MMR_SPACE	(UNCACHED_PHYS | GLOBAL_MMR_OFFSET)/* * Clear region & AS bits. */#define TO_PHYS_MASK		(~(REGION_BITS | AS_MASK))/* * Misc NASID manipulation. */#define NASID_SPACE(n)		((u64)(n) << NASID_SHIFT)#define REMOTE_ADDR(n,a)	(NASID_SPACE(n) | (a))#define NODE_OFFSET(x)		((x) & (NODE_ADDRSPACE_SIZE - 1))#define NODE_ADDRSPACE_SIZE     (1UL << AS_SHIFT)#define NASID_GET(x)		(int) (((u64) (x) >> NASID_SHIFT) & NASID_BITMASK)#define LOCAL_MMR_ADDR(a)	(LOCAL_MMR_SPACE | (a))#define GLOBAL_MMR_ADDR(n,a)	(GLOBAL_MMR_SPACE | REMOTE_ADDR(n,a))#define GLOBAL_MMR_PHYS_ADDR(n,a) (GLOBAL_PHYS_MMR_SPACE | REMOTE_ADDR(n,a))#define GLOBAL_CAC_ADDR(n,a)	(CAC_BASE | REMOTE_ADDR(n,a))#define CHANGE_NASID(n,x)	((void *)(((u64)(x) & ~NASID_MASK) | NASID_SPACE(n)))/* non-II mmr's start at top of big window space (4G) */#define BWIN_TOP		0x0000000100000000UL/* * general address defines */#define CAC_BASE		(CACHED   | AS_CAC_SPACE)#define AMO_BASE		(UNCACHED | AS_AMO_SPACE)#define GET_BASE		(CACHED   | AS_GET_SPACE)/* * Convert Memory addresses between various addressing modes. */#define TO_PHYS(x)		(TO_PHYS_MASK & (x))#define TO_CAC(x)		(CAC_BASE     | TO_PHYS(x))#define TO_AMO(x)		(AMO_BASE     | TO_PHYS(x))#define TO_GET(x)		(GET_BASE     | TO_PHYS(x))/* * Covert from processor physical address to II/TIO physical address: *	II - squeeze out the AS bits *	TIO- requires a chiplet id in bits 38-39.  For DMA to memory, *           the chiplet id is zero.  If we implement TIO-TIO dma, we might need *           to insert a chiplet id into this macro.  However, it is our belief *           right now that this chiplet id will be ICE, which is also zero. */#define PHYS_TO_TIODMA(x)	( (((u64)(x) & NASID_MASK) << 2) | NODE_OFFSET(x))#define PHYS_TO_DMA(x)          ( (((u64)(x) & NASID_MASK) >> 2) | NODE_OFFSET(x))/* * The following definitions pertain to the IO special address * space.  They define the location of the big and little windows * of any given node. */#define BWIN_SIZE_BITS			29	/* big window size: 512M */#define TIO_BWIN_SIZE_BITS		30	/* big window size: 1G */#define NODE_SWIN_BASE(n, w)		((w == 0) ? NODE_BWIN_BASE((n), SWIN0_BIGWIN) \		: RAW_NODE_SWIN_BASE(n, w))#define NODE_IO_BASE(n)			(GLOBAL_MMR_SPACE | NASID_SPACE(n))#define BWIN_SIZE			(1UL << BWIN_SIZE_BITS)#define NODE_BWIN_BASE0(n)		(NODE_IO_BASE(n) + BWIN_SIZE)#define NODE_BWIN_BASE(n, w)		(NODE_BWIN_BASE0(n) + ((u64) (w) << BWIN_SIZE_BITS))#define RAW_NODE_SWIN_BASE(n, w)	(NODE_IO_BASE(n) + ((u64) (w) << SWIN_SIZE_BITS))#define BWIN_WIDGET_MASK		0x7#define BWIN_WINDOWNUM(x)		(((x) >> BWIN_SIZE_BITS) & BWIN_WIDGET_MASK)#define TIO_BWIN_WINDOW_SELECT_MASK	0x7#define TIO_BWIN_WINDOWNUM(x)		(((x) >> TIO_BWIN_SIZE_BITS) & TIO_BWIN_WINDOW_SELECT_MASK)/* * The following definitions pertain to the IO special address * space.  They define the location of the big and little windows * of any given node. */#define SWIN_SIZE_BITS			24#define	SWIN_WIDGET_MASK		0xF#define TIO_SWIN_SIZE_BITS		28#define TIO_SWIN_SIZE			(1UL << TIO_SWIN_SIZE_BITS)#define TIO_SWIN_WIDGET_MASK		0x3/* * Convert smallwindow address to xtalk address. * * 'addr' can be physical or virtual address, but will be converted * to Xtalk address in the range 0 -> SWINZ_SIZEMASK */#define	SWIN_WIDGETNUM(x)		(((x)  >> SWIN_SIZE_BITS) & SWIN_WIDGET_MASK)#define TIO_SWIN_WIDGETNUM(x)		(((x)  >> TIO_SWIN_SIZE_BITS) & TIO_SWIN_WIDGET_MASK)/* * The following macros produce the correct base virtual address for * the hub registers. The REMOTE_HUB_* macro produce * the address for the specified hub's registers.  The intent is * that the appropriate PI, MD, NI, or II register would be substituted * for x. * *   WARNING: *	When certain Hub chip workaround are defined, it's not sufficient *	to dereference the *_HUB_ADDR() macros.  You should instead use *	HUB_L() and HUB_S() if you must deal with pointers to hub registers. *	Otherwise, the recommended approach is to use *_HUB_L() and *_HUB_S(). *	They're always safe. */#define REMOTE_HUB_ADDR(n,x)						\	((n & 1) ?							\	/* TIO: */							\	((volatile u64 *)(GLOBAL_MMR_ADDR(n,x)))			\	: /* SHUB: */							\	(((x) & BWIN_TOP) ? ((volatile u64 *)(GLOBAL_MMR_ADDR(n,x)))\	: ((volatile u64 *)(NODE_SWIN_BASE(n,1) + 0x800000 + (x)))))#define HUB_L(x)			(*((volatile typeof(*x) *)x))#define	HUB_S(x,d)			(*((volatile typeof(*x) *)x) = (d))#define REMOTE_HUB_L(n, a)		HUB_L(REMOTE_HUB_ADDR((n), (a)))#define REMOTE_HUB_S(n, a, d)		HUB_S(REMOTE_HUB_ADDR((n), (a)), (d))#endif /* _ASM_IA64_SN_ADDRS_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -