📄 xvalidation.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.validation;
import edu.udo.cs.yale.operator.IOObject;
import edu.udo.cs.yale.operator.IOContainer;
import edu.udo.cs.yale.operator.Value;
import edu.udo.cs.yale.operator.OperatorException;
import edu.udo.cs.yale.operator.parameter.*;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.example.SplittedExampleSet;
import edu.udo.cs.yale.example.Example;
import edu.udo.cs.yale.example.ExampleReader;
import edu.udo.cs.yale.operator.performance.*;
import edu.udo.cs.yale.tools.math.*;
import edu.udo.cs.yale.tools.LogService;
import java.util.List;
import java.util.ArrayList;
/** <code>XValidation</code> encapsulates a cross-validation experiment. The
* example set {@yale.math S} is split up into <var> number_of_validations</var> subsets
* {@yale.math S_i}. The inner operators are applied <var>number_of_validations</var>
* times using {@yale.math S_i} as the test set (input of the second inner operator) and
* {@yale.math S\backslash S_i} training set (input of the first inner operator).
*
* The first inner operator must accept an
* {@link edu.udo.cs.yale.example.ExampleSet} while the second must accept an
* {@link edu.udo.cs.yale.example.ExampleSet} and the output of the first (which is
* in most cases a {@link edu.udo.cs.yale.operator.learner.Model}) and must produce
* a {@link edu.udo.cs.yale.operator.performance.PerformanceVector}.
*
* @yale.index cross-validation
* @yale.xmlclass XValidation
* @author Ingo, Ralf
* @version $Id: XValidation.java,v 1.4 2004/10/07 20:31:00 ingomierswa Exp $
*/
public class XValidation extends ValidationChain {
private int number, iteration;
public XValidation() {
addValue(new Value("iteration", "The number of the current iteration.") {
public double getValue() {
return iteration;
}
});
}
public int getNumberOfValidationSteps() {
return number;
}
public IOObject[] apply() throws OperatorException {
ExampleSet inputSet = (ExampleSet)getInput(ExampleSet.class);
if (getParameterAsBoolean("leave_one_out")) {
number = inputSet.getSize();
} else {
number = getParameterAsInt("number_of_validations");
}
LogService.logMessage(getName() + ": Starting "+number+"-fold cross validation", LogService.TASK);
// Split training / test set
boolean shuffle = getParameterAsBoolean("shuffle");
SplittedExampleSet splittedES = new SplittedExampleSet(inputSet, number, shuffle);
// start crossvalidation
List averageVectors = new ArrayList();
for (iteration = 0; iteration < number; iteration++) {
splittedES.selectAllSubsetsBut(iteration);
learn(splittedES);
splittedES.selectSingleSubset(iteration);
IOContainer evalOutput = evaluate(splittedES);
handleAverages(evalOutput, averageVectors);
inApplyLoop();
}
// end crossvalidation
PerformanceVector averagePerformance = getPerformanceVector(averageVectors);
if (averagePerformance != null)
setResult(averagePerformance.getMainCriterion());
AverageVector[] result = new AverageVector[averageVectors.size()];
averageVectors.toArray(result);
return result;
}
public List getParameterTypes() {
List types = super.getParameterTypes();
ParameterType type = new ParameterTypeInt("number_of_validations", "Number of subsets for the crossvalidation.", 2, Integer.MAX_VALUE, 10);
type.setExpert(false);
types.add(type);
types.add(new ParameterTypeBoolean("leave_one_out", "Set the number of validations to the number of examples. If set to true, number_of_validations is ignored.", false));
types.add(new ParameterTypeBoolean("shuffle", "If true, shuffle the dataset records.", true));
return types;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -