📄 attributeinformationgain.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator;
import edu.udo.cs.yale.operator.parameter.*;
import edu.udo.cs.yale.tools.LogService;
import edu.udo.cs.yale.tools.Ontology;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.example.Example;
import edu.udo.cs.yale.example.ExampleReader;
import edu.udo.cs.yale.example.Tools;
import java.util.List;
/** For classification tasks the well known information gain methods derived from C4.5 (Quinlan) are used.
*
* @yale.xmlclass InformationGain
* @author ingo
* @version $Id: AttributeInformationGain.java,v 2.10 2004/08/27 11:57:34 ingomierswa Exp $
*/
public class AttributeInformationGain extends Operator {
public static final String INFORMATION_GAIN_KEY = "attribute.information.gain";
public static final String SMALLEST_INFORMATION_GAIN_KEY = "attribute.information.gain.smallest";
private static final Class[] INPUT_CLASSES = { ExampleSet.class };
private static final Class[] OUTPUT_CLASSES = { ExampleSet.class };
public IOObject[] apply() throws OperatorException {
ExampleSet eSet = (ExampleSet)getInput(ExampleSet.class);
double[] informationGain = new double[eSet.getNumberOfAttributes()];
if (Ontology.ATTRIBUTE_VALUE_TYPE.isA(eSet.getLabel().getValueType(), Ontology.NOMINAL)) {
// RatioGain gibt an, ob bei Klassifikationsproblemen ratio gain benutzt werden soll.
boolean ratioGain = getParameterAsBoolean("use_ratio_gain");
informationGain = Tools.getInformationGain(eSet, ratioGain);
} else {
throw new UserError(this, 101, "information gain", eSet.getLabel().getName());
}
normalize(informationGain);
// Setzen der Infolabel fuer die Attribute.
double smallestInformationGainValue = Double.POSITIVE_INFINITY;
for (int i = 0 ; i < eSet.getNumberOfAttributes(); i++) {
if (informationGain[i] < smallestInformationGainValue)
smallestInformationGainValue = informationGain[i];
}
eSet.setUserData(INFORMATION_GAIN_KEY, informationGain);
eSet.setUserData(SMALLEST_INFORMATION_GAIN_KEY, new Double(smallestInformationGainValue));
return new IOObject[] { eSet };
}
/** Diese Methode uebernimmt das Normieren der Werte auf einen Bereich zwischen 0 und 1. Das informativste Attribut
* bekommt dabei uebrigens den Wert 1 zugewiesen, alle anderen sind Bruchteile dieses Wertes.
*/
public static void normalize(double[] infoGain) {
double best = Double.NEGATIVE_INFINITY;
for (int i = 0; i < infoGain.length; i++)
if (infoGain[i] > best) best = infoGain[i];
for (int i = 0; i < infoGain.length; i++)
infoGain[i] /= best;
}
public Class[] getOutputClasses() {
return OUTPUT_CLASSES;
}
public Class[] getInputClasses() {
return INPUT_CLASSES;
}
public List getParameterTypes() {
List types = super.getParameterTypes();
types.add(new ParameterTypeBoolean("use_ratio_gain", "If set to true the ratio gain criterion is used.", true));
return types;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -