📄 classificationcriteriontest.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.performance.test;
import edu.udo.cs.yale.operator.performance.*;
import edu.udo.cs.yale.example.test.*;
import edu.udo.cs.yale.example.*;
import edu.udo.cs.yale.tools.att.*;
import java.util.*;
/** Tests classification criteria.
*
* @version $Id: ClassificationCriterionTest.java,v 1.11 2004/08/27 11:57:43 ingomierswa Exp $
*/
public class ClassificationCriterionTest extends CriterionTestCase {
public void testClassificationError() throws Exception {
Attribute label = ExampleTestTools.attributeYesNo();
label.setIndex(0);
List attributeList = new LinkedList();
attributeList.add(label);
MemoryExampleTable exampleTable
= new MemoryExampleTable(attributeList,
ExampleTestTools.createDataRowReader(new DataRowFactory(DataRowFactory.TYPE_DOUBLE_ARRAY),
new Attribute[] {label},
new String[][] { {"yes"},
{"no"},
{"yes"},
{"no"},
{"yes"},
{"no"},
{"yes"},
{"yes"},
{"yes"},
{"no"},
{"no"},
{"yes"}}
));
AttributeSet attributeSet = new AttributeSet();
attributeSet.setSpecialAttribute("label", label);
ExampleSet eSet = exampleTable.createExampleSet(attributeSet);
ExampleTestTools.createPredictedLabel(eSet);
//eSet.createPredictedLabel();
ExampleReader r = eSet.getExampleReader();
Example e;
e = r.next(); e.setPredictedLabel("yes"); // yy
e = r.next(); e.setPredictedLabel("no"); // nn
e = r.next(); e.setPredictedLabel("no"); // yn
e = r.next(); e.setPredictedLabel("yes"); // ny
e = r.next(); e.setPredictedLabel("yes"); // yy
e = r.next(); e.setPredictedLabel("no"); // nn
e = r.next(); e.setPredictedLabel("yes"); // yy
e = r.next(); e.setPredictedLabel("no"); // yn
e = r.next(); e.setPredictedLabel("no"); // yn
e = r.next(); e.setPredictedLabel("no"); // nn
e = r.next(); e.setPredictedLabel("yes"); // ny
e = r.next(); e.setPredictedLabel("yes"); // yy
// 4x yy
// 3x nn
// 3x yn
// 2x ny
PerformanceVector pv = new PerformanceVector();
for (int i = 0; i < MultiClassificationPerformance.NAME.length; i++)
pv.addCriterion(new MultiClassificationPerformance(i));
for (int i = 0; i < BinaryClassificationPerformance.NAME.length; i++)
pv.addCriterion(new BinaryClassificationPerformance(i));
PerformanceEvaluator.evaluate(null, eSet, pv, false);
assertEquals("accuracy", 7.0 / 12.0, pv.getCriterion(MultiClassificationPerformance.NAME[MultiClassificationPerformance.ACCURACY]).getValue(), 0.00000001);
assertEquals("classification_error", 5.0 / 12.0, pv.getCriterion(MultiClassificationPerformance.NAME[MultiClassificationPerformance.ERROR]).getValue(), 0.00000001);
assertEquals("precision", 4.0 / 6.0, pv.getCriterion(BinaryClassificationPerformance.NAME[BinaryClassificationPerformance.PRECISION]).getValue(), 0.00000001);
assertEquals("recall", 4.0 / 7.0, pv.getCriterion(BinaryClassificationPerformance.NAME[BinaryClassificationPerformance.RECALL]).getValue(), 0.00000001);
assertEquals("fallout", 2.0 / 5.0, pv.getCriterion(BinaryClassificationPerformance.NAME[BinaryClassificationPerformance.FALLOUT]).getValue(), 0.00000001);
assertEquals("true_pos", 4, pv.getCriterion(BinaryClassificationPerformance.NAME[BinaryClassificationPerformance.TRUE_POSITIVE]).getValue(), 0.00000001);
assertEquals("true_neg", 3, pv.getCriterion(BinaryClassificationPerformance.NAME[BinaryClassificationPerformance.TRUE_NEGATIVE]).getValue(), 0.00000001);
assertEquals("false_pos", 2, pv.getCriterion(BinaryClassificationPerformance.NAME[BinaryClassificationPerformance.FALSE_POSITIVE]).getValue(), 0.00000001);
assertEquals("false_neg", 3, pv.getCriterion(BinaryClassificationPerformance.NAME[BinaryClassificationPerformance.FALSE_NEGATIVE]).getValue(), 0.00000001);
}
public void testUCCClone() {
int counter[][] = {{3, 5},{4, 6}};
cloneTest("", new BinaryClassificationPerformance(BinaryClassificationPerformance.TRUE_POSITIVE, counter));
cloneTest("", new BinaryClassificationPerformance(BinaryClassificationPerformance.TRUE_NEGATIVE, counter));
cloneTest("", new BinaryClassificationPerformance(BinaryClassificationPerformance.FALSE_POSITIVE, counter));
cloneTest("", new BinaryClassificationPerformance(BinaryClassificationPerformance.FALSE_NEGATIVE, counter));
}
public void testUCCAverage() {
int counter1[][] = {{3, 5}, {4, 6}};
int counter2[][] = {{5, 8}, {2, 9}};
int sum[][] = {{8, 13},{6, 15}};
BinaryClassificationPerformance[] ucc1 = new BinaryClassificationPerformance[4];
ucc1[0] = new BinaryClassificationPerformance(BinaryClassificationPerformance.TRUE_POSITIVE, counter1);
ucc1[1] = new BinaryClassificationPerformance(BinaryClassificationPerformance.TRUE_NEGATIVE, counter1);
ucc1[2] = new BinaryClassificationPerformance(BinaryClassificationPerformance.FALSE_POSITIVE, counter1);
ucc1[3] = new BinaryClassificationPerformance(BinaryClassificationPerformance.FALSE_NEGATIVE, counter1);
BinaryClassificationPerformance[] ucc2 = new BinaryClassificationPerformance[4];
ucc2[0] = new BinaryClassificationPerformance(BinaryClassificationPerformance.TRUE_POSITIVE, counter2);
ucc2[1] = new BinaryClassificationPerformance(BinaryClassificationPerformance.TRUE_NEGATIVE, counter2);
ucc2[2] = new BinaryClassificationPerformance(BinaryClassificationPerformance.FALSE_POSITIVE, counter2);
ucc2[3] = new BinaryClassificationPerformance(BinaryClassificationPerformance.FALSE_NEGATIVE, counter2);
BinaryClassificationPerformance[] avg = new BinaryClassificationPerformance[4];
avg[0] = new BinaryClassificationPerformance(BinaryClassificationPerformance.TRUE_POSITIVE, sum);
avg[1] = new BinaryClassificationPerformance(BinaryClassificationPerformance.TRUE_NEGATIVE, sum);
avg[2] = new BinaryClassificationPerformance(BinaryClassificationPerformance.FALSE_POSITIVE, sum);
avg[3] = new BinaryClassificationPerformance(BinaryClassificationPerformance.FALSE_NEGATIVE, sum);
for (int i = 0; i < ucc1.length; i++) {
ucc1[i].buildAverage(ucc2[i]);
assertEquals(ucc1[i].getName(), avg[i].getValue(), ucc1[i].getValue(), 0.0000001);
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -