📄 predictionaverage.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.performance;
import edu.udo.cs.yale.tools.math.Averagable;
import edu.udo.cs.yale.example.Example;
import edu.udo.cs.yale.example.ExampleSet;
/** Returns the average value of the prediction. This criterion can be used
* to detect whether a learning scheme predicts nonsense, e.g. always the
* same error. This criterion is not suitable for evaluating the performance
* and should never be used as main criterion.
* The {@link #getFitness()} method alsways returns 0.
*
* @version $Id: PredictionAverage.java,v 2.8 2004/08/27 11:57:43 ingomierswa Exp $
*/
public class PredictionAverage extends MeasuredPerformance {
private double sum;
private double squaredSum;
private int count;
public void countExample(Example example) {
count++;
double v = example.getPredictedLabel();
if (!Double.isNaN(v)) {
sum += v;
squaredSum += v*v;
}
}
public double getValue() {
return sum / count;
}
public double getVariance() {
double avg = getValue();
return (squaredSum / count) - avg*avg;
}
public void startCounting(ExampleSet set) {
count = 0;
sum = 0.0;
}
public String getName() {
return "prediction";
}
/** Returns 0. */
public double getFitness() { return 0.0; }
protected void cloneAveragable(Averagable newPC) {
//super.cloneAveragable(newPC);
PredictionAverage pa = (PredictionAverage)newPC;
this.sum = pa.sum;
this.squaredSum = pa.squaredSum;
this.count = pa.count;
}
public void buildAverage(Averagable performance) {
super.buildAverage(performance);
PredictionAverage other = (PredictionAverage)performance;
this.sum += other.sum;
this.squaredSum += other.squaredSum;
this.count += other.count;
}
public String getDescription() {
return "This is not a real performance measure, but merely the average of the predicted labels.";
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -