📄 normalization.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.preprocessing;
import edu.udo.cs.yale.operator.Operator;
import edu.udo.cs.yale.operator.IOObject;
import edu.udo.cs.yale.operator.OperatorException;
import edu.udo.cs.yale.operator.UserError;
import edu.udo.cs.yale.operator.parameter.*;
import edu.udo.cs.yale.generator.GenerationException;
import edu.udo.cs.yale.tools.LogService;
import edu.udo.cs.yale.tools.ParameterService;
import edu.udo.cs.yale.tools.Ontology;
import edu.udo.cs.yale.example.Attribute;
import edu.udo.cs.yale.example.AttributeParser;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.example.ExampleReader;
import edu.udo.cs.yale.example.Example;
import edu.udo.cs.yale.generator.*;
import java.io.File;
import java.io.FileReader;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.ListIterator;
/** This operator performs a normalization.
*
* @version $Id: Normalization.java,v 1.5 2004/09/09 12:00:53 ingomierswa Exp $
*/
public class Normalization extends Operator {
private static final Class[] INPUT_CLASSES = { ExampleSet.class };
private static final Class[] OUTPUT_CLASSES = { ExampleSet.class };
public Class[] getInputClasses() { return INPUT_CLASSES; }
public Class[] getOutputClasses() { return OUTPUT_CLASSES; }
public IOObject[] apply() throws OperatorException {
ExampleSet exampleSet = (ExampleSet)getInput(ExampleSet.class);
if (!getParameterAsBoolean("mean_variance_scaling")) {
LogService.logMessage("Mean-variance-scaling set to OFF",LogService.MINIMUM);
ArrayList generators = new ArrayList();
double min = getParameterAsDouble("min");
double max = getParameterAsDouble("max");
if (max < min)
throw new UserError(this, 116, "max", "Must not be smaller than 'min'");
for (int i = 0; i < exampleSet.getNumberOfAttributes(); i++) {
FeatureGenerator g = new NormalizationGenerator(min, max);
g.setArguments(new Attribute[] { exampleSet.getAttribute(i) });
generators.add(g);
}
try {
List attributes = FeatureGenerator.generateAll(exampleSet.getExampleTable(),
generators);
exampleSet.removeAllAttributes();
exampleSet.addAllAttributes(attributes);
} catch (GenerationException e) {
throw new UserError(this, e, 108, e.getMessage());
}
} else {
LogService.logMessage("Mean-variance-scaling set to ON",LogService.MINIMUM);
ExampleReader r = exampleSet.getExampleReader();
while (r.hasNext()) {
Example example = (Example)r.next();
for (int i = 0; i < exampleSet.getNumberOfAttributes(); i++) {
Attribute attribute = exampleSet.getAttribute(i);
if (attribute.getVariance() == 0) {
example.setValue(attribute, 0);
} else {
double newValue = (example.getValue(attribute)-attribute.getAverage())/(Math.sqrt(attribute.getVariance()));
example.setValue(attribute, newValue);
}
}
}
}
exampleSet.recalculateAllAttributeStatistics();
return new IOObject[] { exampleSet };
}
public List getParameterTypes() {
List types = super.getParameterTypes();
types.add(new ParameterTypeDouble("min", "The minimum value after normalization",
Double.NEGATIVE_INFINITY,
Double.POSITIVE_INFINITY, 0.0d));
types.add(new ParameterTypeDouble("max", "The maximum value after normalization",
Double.NEGATIVE_INFINITY,
Double.POSITIVE_INFINITY, 1.0d));
ParameterType type =
new ParameterTypeBoolean("mean_variance_scaling",
"Determines whether to perform mean-variance-scaling or not; scaling ignores min- and max-setings",
true);
type.setExpert(false);
types.add(type);
return types;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -