📄 noiseoperator.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.preprocessing;
import edu.udo.cs.yale.operator.Operator;
import edu.udo.cs.yale.operator.IOObject;
import edu.udo.cs.yale.operator.OperatorException;
import edu.udo.cs.yale.operator.parameter.*;
import edu.udo.cs.yale.tools.LogService;
import edu.udo.cs.yale.tools.Ontology;
import edu.udo.cs.yale.tools.RandomGenerator;
import edu.udo.cs.yale.example.Example;
import edu.udo.cs.yale.example.ExampleReader;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.example.Attribute;
import edu.udo.cs.yale.generator.*;
import java.util.Iterator;
import java.util.List;
import java.util.LinkedList;
import java.util.Map;
import java.util.HashMap;
/** This operator adds random attributes and white noise to the data.
*
* @version $Id: NoiseOperator.java,v 1.4 2004/09/09 12:00:53 ingomierswa Exp $
*/
public class NoiseOperator extends Operator {
private static final Class[] INPUT_CLASSES = { ExampleSet.class };
private static final Class[] OUTPUT_CLASSES = { ExampleSet.class };
public Class[] getInputClasses() { return INPUT_CLASSES; }
public Class[] getOutputClasses() { return OUTPUT_CLASSES; }
public IOObject[] apply() throws OperatorException {
ExampleSet exampleSet = (ExampleSet)getInput(ExampleSet.class);
// read noise values from list
Map noiseMap = new HashMap();
List noises = getParameterList("noise");
Iterator i = noises.iterator();
while (i.hasNext()) {
Object[] pair = (Object[])i.next();
noiseMap.put((String)pair[0], (Double)pair[1]);
}
// add noise to existing attributes
double defaultNoise = getParameterAsDouble("default_noise");
ExampleReader reader = exampleSet.getExampleReader();
while (reader.hasNext()) {
Example example = reader.next();
for (int j = 0; j < exampleSet.getNumberOfAttributes(); j++) {
Attribute attribute = exampleSet.getAttribute(j);
Double noiseObject = (Double)noiseMap.get(attribute.getName());
double noise = noiseObject == null ? defaultNoise : noiseObject.doubleValue();
double noiseValue =
RandomGenerator.getGlobalRandomGenerator().nextGaussian() * noise *
Math.abs(attribute.getMaximum() - attribute.getMinimum());
example.setValue(attribute, example.getValue(attribute) + noiseValue);
}
}
// add new noise attributes
int numberOfNewAttributes = getParameterAsInt("random_attributes");
List newAttributes = new LinkedList();
for (int j = 0; j < numberOfNewAttributes; j++) {
newAttributes.add(new Attribute(Attribute.createName("random"),
Ontology.REAL, Ontology.SINGLE_VALUE,
Attribute.UNDEFINED_BLOCK_NR, null));
}
exampleSet.getExampleTable().addAttributes(newAttributes);
exampleSet.addAllAttributes(newAttributes);
reader = exampleSet.getExampleReader();
while (reader.hasNext()) {
Example example = reader.next();
i = newAttributes.iterator();
while (i.hasNext()) {
example.setValue((Attribute)i.next(), RandomGenerator.getGlobalRandomGenerator().nextDouble());
}
}
exampleSet.recalculateAllAttributeStatistics();
return new IOObject[] { exampleSet };
}
public List getParameterTypes() {
List types = super.getParameterTypes();
ParameterType type = new ParameterTypeInt("random_attributes", "Adds this number of random attributes.",
0, Integer.MAX_VALUE, 0);
type.setExpert(false);
types.add(type);
type = new ParameterTypeDouble("default_noise", "The standard deviation of the default noise.",
0.0d, Double.POSITIVE_INFINITY, 0.1d);
type.setExpert(false);
types.add(type);
types.add(new ParameterTypeList("noise", "List of noises for each attributes.",
new ParameterTypeDouble("noise", "Names of attributes and noises to use.", 0.0d,
Double.POSITIVE_INFINITY, 0.1d)));
return types;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -