📄 modelbasedsampling.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.preprocessing;
import edu.udo.cs.yale.operator.Operator;
import edu.udo.cs.yale.operator.IOObject;
import edu.udo.cs.yale.operator.OperatorException;
import edu.udo.cs.yale.operator.learner.meta.WeightedPerformanceMeasures;
import edu.udo.cs.yale.example.Attribute;
import edu.udo.cs.yale.example.Example;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.example.ExampleReader;
import edu.udo.cs.yale.example.ExampleTable;
import edu.udo.cs.yale.example.MemoryExampleTable;
import edu.udo.cs.yale.example.DoubleArrayDataRow;
import edu.udo.cs.yale.example.ListDataRowReader;
import edu.udo.cs.yale.example.SimpleExampleSet;
import edu.udo.cs.yale.tools.RandomGenerator;
import java.util.List;
import java.util.LinkedList;
import java.util.Arrays;
import java.util.Iterator;
/** Sampling based on a learned model.
*
* @see edu.udo.cs.yale.operator.learner.meta.BayesianBoosting
* @version $Id: ModelBasedSampling.java,v 1.6 2004/09/17 12:57:42 ingomierswa Exp $
*/
public class ModelBasedSampling extends Operator {
public IOObject[] apply() throws OperatorException {
ExampleSet exampleSet = (ExampleSet)getInput(ExampleSet.class);
// from BB
Attribute weightAttr = exampleSet.getAttribute(ExampleSet.WEIGHT_NAME);
if (weightAttr == null) {
weightAttr = exampleSet.createWeightAttribute();
ExampleReader reader = exampleSet.getExampleReader();
while (reader.hasNext()) {
reader.next().setWeight(1.0d);
}
}
WeightedPerformanceMeasures weightedPerformanceMeasures = new WeightedPerformanceMeasures(exampleSet);
weightedPerformanceMeasures.reweightExamples(exampleSet);
// end from BB
// recalc weight att statistics
exampleSet.recalculateAttributeStatistics(exampleSet.getWeight());
// fill new table
Attribute[] allAttributes = exampleSet.getExampleTable().getAttributes();
List dataList = new LinkedList();
ExampleReader reader = exampleSet.getExampleReader();
double maxWeight = exampleSet.getWeight().getMaximum();
while (reader.hasNext()) {
Example example = reader.next();
if (RandomGenerator.getGlobalRandomGenerator().nextDouble() > example.getWeight() / maxWeight) {
example.setWeight(1.0d);
double[] values = new double[allAttributes.length];
for (int i = 0; i < values.length; i++)
values[i] = example.getValue(allAttributes[i]);
dataList.add(new DoubleArrayDataRow(values));
}
}
List attributes = Arrays.asList(allAttributes);
ExampleTable exampleTable = new MemoryExampleTable(attributes, new ListDataRowReader(dataList.iterator()));
// regular attributes.
List regularAttributes = new LinkedList();
for (int i = 0; i < exampleSet.getNumberOfAttributes(); i++)
regularAttributes.add(exampleSet.getAttribute(i));
// special attributes.
ExampleSet result = new SimpleExampleSet(exampleTable, regularAttributes);
Iterator special = exampleSet.getSpecialAttributeNames().iterator();
while (special.hasNext()) {
String name = (String)special.next();
result.setSpecialAttribute(name, exampleSet.getAttribute(name));
}
result.recalculateAllAttributeStatistics();
return new IOObject[] { result };
}
public Class[] getInputClasses() {
return new Class[] { ExampleSet.class };
}
public Class[] getOutputClasses() {
return new Class[] { ExampleSet.class };
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -