📄 principalcomponentstransformation.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.features;
import edu.udo.cs.yale.operator.Operator;
import edu.udo.cs.yale.operator.OperatorException;
import edu.udo.cs.yale.operator.UserError;
import edu.udo.cs.yale.operator.IOObject;
import edu.udo.cs.yale.operator.parameter.*;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.example.Attribute;
import edu.udo.cs.yale.tools.WekaTools;
import edu.udo.cs.yale.tools.LogService;
import weka.attributeSelection.PrincipalComponents;
import weka.core.Instances;
import java.util.List;
/** Builds the principal components of the given data. The user can specify the amount of variance to cover in
* the original data when retaining the best number of principal components. This operator makes use of the Weka
* implementation <code>PrincipalComponent</code>.
*
* @version $Id: PrincipalComponentsTransformation.java,v 1.1 2004/09/01 12:39:50 ingomierswa Exp $
*/
public class PrincipalComponentsTransformation extends Operator {
public IOObject[] apply() throws OperatorException {
ExampleSet exampleSet = (ExampleSet)getInput(ExampleSet.class);
PrincipalComponents transformation = new PrincipalComponents();
transformation.setNormalize(false); // if the user wants to normalize the data he has to apply the filter before
transformation.setVarianceCovered(getParameterAsDouble("min_variance_coverage"));
LogService.logMessage(getName() + ": Converting to Weka instances.", LogService.MINIMUM);
Instances instances = WekaTools.toWekaInstances(exampleSet, "TempInstances", exampleSet.getLabel(), true);
try {
LogService.logMessage(getName() + ": Building principal components.", LogService.MINIMUM);
transformation.buildEvaluator(instances);
} catch (Exception e) {
throw new UserError(this, e, 905, new Object[] {"PrincipalComponents", e});
}
ExampleSet result = null;
try {
Instances transformed = transformation.transformedData();
result = WekaTools.toYaleExampleSet(transformed, "pc");
} catch (Exception e) {
throw new OperatorException("Cannot convert to principal components: " + e);
}
return new IOObject[] { result };
}
public Class[] getOutputClasses() {
return new Class[] { ExampleSet.class };
}
public Class[] getInputClasses() {
return new Class[] { ExampleSet.class };
}
public List getParameterTypes() {
List types = super.getParameterTypes();
ParameterType type = new ParameterTypeDouble("min_variance_coverage",
"The minimum variance to cover in the original data to determine the number of principal components.",
0.0, 1.0, 0.95);
type.setExpert(false);
types.add(type);
return types;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -