📄 geneticalgorithm.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.features.ga;
import edu.udo.cs.yale.operator.OperatorException;
import edu.udo.cs.yale.operator.parameter.*;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.example.AttributeWeightedExampleSet;
import edu.udo.cs.yale.operator.features.*;
import edu.udo.cs.yale.tools.RandomGenerator;
import java.util.LinkedList;
import java.util.List;
/** A genetic algorithm for feature selection (mutation=switch features on and off,
* crossover=interchange used features). Selection is done by roulette wheel.
* Genetic algorithms are general purpose optimization / search algorithms that
* are suitable in case of no or little problem knowledge.
* <br/>
*
* A genetic algorithm works as follows
* <ol>
* <li>Generate an initial population consisting of <code>population_size</code> individuals.
* Each attribute is switched on with probability <code>p_initialize</code></li>
* <li>For all individuals in the population
* <ul>
* <li>Perform mutation, i.e. set used attributes to unused with probability <code>p_mutation</code> and vice versa.</li>
* <li>Choose two individuals from the population and perform crossover with probability <code>p_crossover</code>.
* The type of crossover can be selected by <code>crossover_type</code>.</li>
* </ul>
* </li>
* <li>Perform selection, map all individuals to sections on a roulette wheel whose size is proportional
* to the individual's fitness and draw <code>population_size</code> individuals at random according
* to their probability.</li>
* <li>As long as the fitness improves, go to 2</li>
* </ol>
*
* If the example set contains value series attributes with blocknumbers, the whole block will be switched on and off.
*
* @yale.xmlclass GeneticAlgorithm
* @version $Id: GeneticAlgorithm.java,v 2.22 2004/08/27 11:57:36 ingomierswa Exp $
*/
public class GeneticAlgorithm extends AbstractGeneticAlgorithm {
/** Returns an operator that performs the mutation. Can be overridden by subclasses. */
protected PopulationOperator getMutationPopulationOperator() {
double pMutation = getParameterAsDouble("p_mutation");
return new SelectionMutation(pMutation);
}
/** Returns an operator that performs crossover. Can be overridden by subclasses. */
protected PopulationOperator getCrossoverPopulationOperator() {
double pCrossover = getParameterAsDouble("p_crossover");
int crossoverType = getParameterAsInt("crossover_type");
return new SelectionCrossover(crossoverType, pCrossover);
}
public List getParameterTypes() {
List types = super.getParameterTypes();
ParameterType type = new ParameterTypeDouble("p_mutation",
"Probability for an attribute to be changed (-1: 1 / numberOfAtt).",
-1.0d, 1.0d, 0.1d);
type.setExpert(false);
types.add(type);
type = new ParameterTypeDouble("p_crossover",
"Probability for an individual to be selected for crossover.",
0.0d, 1.0d, 0.5d);
type.setExpert(false);
types.add(type);
types.add(new ParameterTypeCategory("crossover_type",
"Type of the crossover.",
SelectionCrossover.CROSSOVER_TYPES,
SelectionCrossover.UNIFORM));
return types;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -