📄 abstractgeneticalgorithm.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.features.ga;
import edu.udo.cs.yale.operator.OperatorException;
import edu.udo.cs.yale.operator.IOObject;
import edu.udo.cs.yale.operator.parameter.*;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.example.AttributeWeightedExampleSet;
import edu.udo.cs.yale.operator.features.*;
import edu.udo.cs.yale.tools.RandomGenerator;
import java.util.LinkedList;
import java.util.List;
/** A genetic algorithm for feature selection (mutation=switch features on and off,
* crossover=interchange used features). Selection is done by roulette wheel.
* Genetic algorithms are general purpose optimization / search algorithms that
* are suitable in case of no or little problem knowledge.
* <br/>
*
* A genetic algorithm works as follows
* <ol>
* <li>Generate an initial population consisting of <code>population_size</code> individuals.
* Each attribute is switched on with probability <code>p_initialize</code></li>
* <li>For all individuals in the population
* <ul>
* <li>Perform mutation, i.e. set used attributes to unused with probability <code>p_mutation</code> and vice versa.</li>
* <li>Choose two individuals from the population and perform crossover with probability <code>p_crossover</code>.
* The type of crossover can be selected by <code>crossover_type</code>.</li>
* </ul>
* </li>
* <li>Perform selection, map all individuals to sections on a roulette wheel whose size is proportional
* to the individual's fitness and draw <code>population_size</code> individuals at random according
* to their probability.</li>
* <li>As long as the fitness improves, go to 2</li>
* </ol>
*
* If the example set contains value series attributes with blocknumbers, the whole block will be switched on and off.
*
* @version $Id: AbstractGeneticAlgorithm.java,v 2.4 2004/09/14 08:39:05 ingomierswa Exp $
*/
public abstract class AbstractGeneticAlgorithm extends FeatureOperator {
private LinkedList preOp = new LinkedList();
private LinkedList postOp = new LinkedList();
/** The size of the population. */
private int numberOfIndividuals;
/** Maximum number of generations. */
private int maxGen;
/** Initial porbability for an attribute to be switched on. */
private double pInitialize;
/** Stop criterion: Stop after generationsWithoutImproval generations without an improval of the fitness. */
private int generationsWithoutImproval;
/** Returns an operator that performs the mutation. Can be overridden by subclasses. */
protected abstract PopulationOperator getMutationPopulationOperator() throws OperatorException;
/** Returns an operator that performs crossover. Can be overridden by subclasses. */
protected abstract PopulationOperator getCrossoverPopulationOperator() throws OperatorException;
public IOObject[] apply() throws OperatorException {
this.numberOfIndividuals = getParameterAsInt("population_size");
this.maxGen = getParameterAsInt("maximum_number_of_generations");
this.generationsWithoutImproval = getParameterAsInt("generations_without_improval");
boolean keepBest = getParameterAsBoolean("keep_best_individual");
this.pInitialize = getParameterAsDouble("p_initialize");
// pre eval ops
preOp = new LinkedList();
preOp.add(new RouletteWheel(numberOfIndividuals, keepBest));
PopulationOperator crossover = getCrossoverPopulationOperator();
if (crossover != null)
preOp.add(crossover);
PopulationOperator mutation = getMutationPopulationOperator();
if (mutation != null)
preOp.add(mutation);
preOp.addAll(getPreProcessingPopulationOperators());
// post eval ops
postOp = new LinkedList();
postOp.addAll(getPostProcessingPopulationOperators());
return super.apply();
}
/** Sets up a population of given size and creates ExampleSets with
* randomly selected attributes (the probability to be switched on is controlled by
* pInitialize). */
public Population createInitialPopulation(ExampleSet es) {
Population initP = new Population();
int i = 0;
while (initP.getNumberOfIndividuals() < numberOfIndividuals) {
AttributeWeightedExampleSet nes = new AttributeWeightedExampleSet((ExampleSet)es.clone());
for (int j = 0; j < nes.getNumberOfAttributes(); j++) {
if (RandomGenerator.getGlobalRandomGenerator().nextDouble() < pInitialize)
j = nes.flipAttributeUsed(j);
}
if (nes.getNumberOfUsedAttributes() > 0) initP.add(nes);
}
return initP;
}
/** Returns an empty list. */
protected List getPreProcessingPopulationOperators() { return new LinkedList(); }
/** Returns an empty list. */
protected List getPostProcessingPopulationOperators() { return new LinkedList(); }
/** Returns the list with pre eval pop ops. */
public final List getPreEvaluationPopulationOperators() { return preOp; }
/** Returns the list with post eval pop ops. */
public final List getPostEvaluationPopulationOperators() { return postOp; }
/** Returns true if generation is >= maximum_number_of_generations or after generations_without_improval generations
* without improval.
*/
public boolean solutionGoodEnough(Population pop) {
return ((pop.getGeneration() >= maxGen) || (pop.getGenerationsWithoutImproval() >= generationsWithoutImproval));
}
public List getParameterTypes() {
List types = super.getParameterTypes();
ParameterType type = new ParameterTypeBoolean("keep_best_individual", "If set to true, the best individual of each generations is guaranteed to be selected for the next generation.", true);
type.setExpert(false);
types.add(type);
type = new ParameterTypeInt("population_size", "Number of individuals per generation.", 1, Integer.MAX_VALUE, 5);
type.setExpert(false);
types.add(type);
type = new ParameterTypeInt("maximum_number_of_generations", "Number of generations after which to terminate the algorithm.", 1, Integer.MAX_VALUE, 30);
type.setExpert(false);
types.add(type);
type = new ParameterTypeInt("generations_without_improval", "Stop criterion: Stop after n generations without improval of the performance.", 1, Integer.MAX_VALUE, 20);
type.setExpert(false);
types.add(type);
types.add(new ParameterTypeDouble("p_initialize", "Initial probability for an attribute to be switched on.", 0, 1, 0.5));
return types;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -