📄 forwardweighting.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.features.weighting;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.example.AttributeWeightedExampleSet;
import edu.udo.cs.yale.operator.features.*;
import edu.udo.cs.yale.tools.LogService;
/** This operator performs the weighting under the naive assumption that the features are independent from each other.
* Each attribute is weighted with a linear search. This approach may deliver good results after short time if
* the features indeed are not highly correlated.
*
* @version $Id: ForwardWeighting.java,v 1.5 2004/08/27 11:57:37 ingomierswa Exp $
*/
public class ForwardWeighting extends FeatureWeighting {
public PopulationOperator getWeightingOperator(String parameter) {
double[] weights = new double[] { 0.25d, 0.5d, 0.75d, 1.0d };
if ((parameter != null) && (parameter.length() != 0)) {
try {
String[] weightStrings = parameter.split(" ");
weights = new double[weightStrings.length];
for (int i = 0; i < weights.length; i++)
weights[i] = Double.parseDouble(weightStrings[i]);
} catch (Exception e) {
LogService.logMessage("Could not create weights: " + e.getMessage() + "! Use standard weights.",
LogService.ERROR);
weights = new double[] { 0.25d, 0.5d, 0.75d, 1.0d };
}
}
return new SimpleWeighting(0.0d, weights);
}
public Population createInitialPopulation(ExampleSet es) {
Population initPop = new Population();
AttributeWeightedExampleSet nes = new AttributeWeightedExampleSet((ExampleSet)es.clone());
for (int i = 0; i < es.getNumberOfAttributes(); i++)
nes.setWeight(i, 0.0d);
for (int i = 0; i < es.getNumberOfAttributes(); i++) {
AttributeWeightedExampleSet forwardES = (AttributeWeightedExampleSet)nes.clone();
i = forwardES.setWeightForBlock(i, 1.0d);
initPop.add(forwardES);
}
return initPop;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -