📄 standarddeviationweighting.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.features.weighting;
import edu.udo.cs.yale.operator.IOObject;
import edu.udo.cs.yale.operator.Operator;
import edu.udo.cs.yale.operator.OperatorException;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.example.Attribute;
import edu.udo.cs.yale.example.AttributeWeights;
import edu.udo.cs.yale.operator.parameter.*;
import edu.udo.cs.yale.Statistics;
import edu.udo.cs.yale.gui.SimplePlotterDialog;
import java.util.List;
/** <p>
* Creates a plot of the standard deviations of all attributes. The values can be normalized
* by the average, the minimum, or the maximum of the attribute. Additionally, this operator
* can create attribute weights based on the standard deviation.
* </p>
*
* @author Ingo Mierswa
* @version $Id: StandardDeviationWeighting.java,v 1.1 2004/08/30 15:08:29 ingomierswa Exp $
*/
public class StandardDeviationWeighting extends Operator {
private static final String[] NORMALIZATIONS = {
"none", "average", "minimum", "maximum"
};
private static final int NONE = 0;
private static final int AVERAGE = 1;
private static final int MINIMUM = 2;
private static final int MAXIMUM = 3;
public IOObject[] apply() throws OperatorException {
ExampleSet exampleSet = (ExampleSet)getInput(ExampleSet.class, false);
int normalization = getParameterAsInt("normalize");
Statistics stats = new Statistics("Standard Deviation Plot");
stats.init(new String[] { "Attribute index", "StandardDeviation/" + NORMALIZATIONS[normalization] });
AttributeWeights weights = new AttributeWeights();
for (int i = 0; i < exampleSet.getNumberOfAttributes(); i++) {
Attribute attribute = exampleSet.getAttribute(i);
double data = Math.sqrt(attribute.getVariance());
switch (normalization) {
case AVERAGE: data /= attribute.getAverage(); break;
case MINIMUM: data /= attribute.getMinimum(); break;
case MAXIMUM: data /= attribute.getMaximum(); break;
default: break;
}
data = Math.abs(data);
stats.add(new Object[] { new Double(i), new Double(data) });
weights.setWeight(attribute.getName(), data);
}
if (getParameterAsBoolean("create_plot")) {
SimplePlotterDialog plotter = new SimplePlotterDialog(stats);
plotter.setXAxis(0);
plotter.plotColumn(1, true);
plotter.show();
}
if (getParameterAsBoolean("create_weights")) {
return new IOObject[] { weights };
} else {
return new IOObject[0];
}
}
public Class[] getInputClasses() {
return new Class[0];
}
public Class[] getOutputClasses() {
if (getParameterAsBoolean("create_weights")) {
return new Class[] { AttributeWeights.class };
} else {
return new Class[0];
}
}
public List getParameterTypes() {
List types = super.getParameterTypes();
ParameterType type =
new ParameterTypeCategory("normalize",
"Indicates if the standard deviation should be dividey by the minimum, maximum, or average of the attribute.",
NORMALIZATIONS,
0);
type.setExpert(false);
types.add(type);
type = new ParameterTypeBoolean("create_plot",
"Indicates if a plot with the standard deviations should be created.",
true);
type.setExpert(false);
types.add(type);
type = new ParameterTypeBoolean("create_weights",
"Indicates if attribute weights should be created based on the standard deviation values for the attributes.",
false);
type.setExpert(false);
types.add(type);
return types;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -