📄 varianceadaption.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.features.weighting;
import edu.udo.cs.yale.operator.features.*;
/**
*
* @version $Id: VarianceAdaption.java,v 1.5 2004/08/27 11:57:37 ingomierswa Exp $
*/
public class VarianceAdaption implements PopulationOperator {
/** Factor for determining the number of changes. */
private static final int INTERVAL_SIZE = 10;
/** Counter for good changes. */
private int goodCount = 0;
/** The weighting mutation. */
private WeightingMutation weighting = null;
public VarianceAdaption(WeightingMutation weighting) {
this.weighting = weighting;
}
/** The default implementation returns true for every generation. */
public boolean performOperation(int generation) { return true; }
public void operate(Population population) {
if (population.getGenerationsWithoutImproval() == 0)
goodCount++;
if (population.getNumberOfIndividuals() != 0) {
int delta = population.get(0).getNumberOfAttributes() * INTERVAL_SIZE;
if ((population.getGeneration() % delta) == 0) {
// next adaption point
if (((double)goodCount / (double)delta) < 0.2) {
weighting.setVariance(weighting.getVariance() / 2.0d);
} else {
weighting.setVariance(weighting.getVariance() * 2.0d);
}
goodCount = 0;
}
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -