📄 featureweighting.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.features.weighting;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.example.AttributeWeightedExampleSet;
import edu.udo.cs.yale.operator.IOObject;
import edu.udo.cs.yale.operator.parameter.*;
import edu.udo.cs.yale.operator.features.*;
import edu.udo.cs.yale.operator.OperatorException;
import java.util.List;
import java.util.LinkedList;
/** This operator performs the weighting under the naive assumption that the features are independent from each other.
* Each attribute is weighted with a linear search. This approach may deliver good results after short time if
* the features indeed are not highly correlated. <br />
* The ideas of forward selection and backward elimination can easily be used for the weighting with help
* of a {@link SimpleWeighting}.
*
* @version $Id: FeatureWeighting.java,v 1.7 2004/09/14 08:39:06 ingomierswa Exp $
*/
public abstract class FeatureWeighting extends FeatureOperator {
private List preOps = new LinkedList();
private List postOps = new LinkedList();
private int generationsWOImp = 0;
public abstract PopulationOperator getWeightingOperator(String parameter);
public IOObject[] apply() throws OperatorException {
generationsWOImp = getParameterAsInt("generations_without_improval");
preOps = new LinkedList();
preOps.add(new KeepBest(getParameterAsInt("keep_best")));
preOps.add(getWeightingOperator(getParameterAsString("weights")));
preOps.add(new RedundanceRemoval());
postOps = new LinkedList();
return super.apply();
}
public boolean solutionGoodEnough(Population population) {
boolean stop = population.empty() || (population.getGenerationsWithoutImproval() >= generationsWOImp);
return stop;
}
public List getPreEvaluationPopulationOperators() {
return preOps;
}
public List getPostEvaluationPopulationOperators() {
return postOps;
}
public List getParameterTypes() {
List types = super.getParameterTypes();
ParameterType type = new ParameterTypeInt("keep_best", "Keep the best n individuals in each generation.", 1, Integer.MAX_VALUE, 1);
type.setExpert(false);
types.add(type);
type = new ParameterTypeInt("generations_without_improval", "Stop after n generations without improval of the performance.", 1, Integer.MAX_VALUE, 1);
type.setExpert(false);
types.add(type);
types.add(new ParameterTypeString("weights", "Use these weights for the creation of individuals in each generation.", true));
return types;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -