📄 thresholdapplier.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator;
import java.util.Arrays;
import java.util.List;
import edu.udo.cs.yale.example.Attribute;
import edu.udo.cs.yale.example.Example;
import edu.udo.cs.yale.example.ExampleReader;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.tools.Ontology;
/** This operator applies the given threshold to an example set and maps a soft prediction to crisp values.
*
* @version $Id: ThresholdApplier.java,v 2.5 2004/09/09 12:00:52 ingomierswa Exp $
*/
public class ThresholdApplier extends Operator {
public Class[] getInputClasses() { return new Class[] { ExampleSet.class, Threshold.class }; }
public Class[] getOutputClasses() { return new Class[] { ExampleSet.class }; }
public IOObject[] apply() throws OperatorException {
ExampleSet exampleSet = (ExampleSet)getInput(ExampleSet.class);
Threshold threshold = (Threshold)getInput(Threshold.class);
Attribute predictedLabel = exampleSet.getPredictedLabel();
if (predictedLabel == null)
throw new UserError(this, 107);
predictedLabel.setValueType(Ontology.NOMINAL);
int zeroIndex = predictedLabel.mapString(threshold.getZeroClass());
int oneIndex = predictedLabel.mapString(threshold.getOneClass());
ExampleReader reader = exampleSet.getExampleReader();
while (reader.hasNext()) {
Example example = reader.next();
double softPrediction = example.getValue(predictedLabel);
double crispPrediction = softPrediction <= threshold.getThreshold() ? zeroIndex : oneIndex; // IM: kleiner oder kleiner gleich?
example.setValue(predictedLabel, crispPrediction);
}
exampleSet.recalculateAttributeStatistics(predictedLabel);
return new IOObject[] { exampleSet };
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -