📄 wekalearner.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.learner.weka;
import edu.udo.cs.yale.operator.parameter.*;
import edu.udo.cs.yale.operator.OperatorException;
import edu.udo.cs.yale.operator.UserError;
import edu.udo.cs.yale.operator.learner.AbstractLearner;
import edu.udo.cs.yale.operator.learner.Model;
import edu.udo.cs.yale.example.Attribute;
import edu.udo.cs.yale.example.Example;
import edu.udo.cs.yale.example.ExampleReader;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.tools.Ontology;
import edu.udo.cs.yale.tools.LogService;
import edu.udo.cs.yale.tools.WekaTools;
import weka.classifiers.Classifier;
import weka.core.Instances;
import java.util.List;
import java.util.Iterator;
/** This operator can build all classifiers from the
* <a href="http://www.cs.waikato.ac.nz/~ml/weka/">Weka</a> package.<br/>
* The classifier type can be selected by the parameter <var>weka_learner_name</var>.
* Parameters can be passed to the Weka classifier using the Yale parameter list
* <var>weka_parameters</var>. The leading dash "-" for the keys must be omitted.
* See the Weka javadoc for classifier and parameter descriptions.<br/>
*
* Some Weka operators like bagging and boosting forward parameters to inner classifiers
* (specified by parameter W and the classname). To separate these parameters from the parameters
* of the wrapper, use a single parameter with key "-" and empty value before each
* parameter value which should be passed to the learning scheme.
*
* For all meta learning schemes which uses only one other weka learner (usually with option W)
* the operator {@link WekaMetaLearner} can also be used.
*
* @yale.xmlclass WekaLearner
* @version $Id: WekaLearner.java,v 1.3 2004/08/27 11:57:42 ingomierswa Exp $
*/
public class WekaLearner extends AbstractLearner {
public static final String[] WEKA_CLASSIFIERS = WekaTools.getWekaClasses(weka.classifiers.Classifier.class);
public Model learn(ExampleSet exampleSet) throws OperatorException {
String operatorName = getWekaLearnerName();
String[] parameters = getWekaParameters();
boolean useDist = getParameterAsBoolean("use_distribution");
if (useDist && (!exampleSet.getLabel().isNominal()))
throw new UserError(this, 101, "distribution learning", exampleSet.getLabel().getName());
Classifier classifier = null;
try {
classifier = Classifier.forName(operatorName, parameters);
} catch (Exception e) {
throw new UserError(this, e, 904, new Object[] { operatorName, e});
}
LogService.logMessage(getName() + ": Converting to Weka instances.", LogService.MINIMUM);
Instances instances = WekaTools.toWekaInstances(exampleSet, "TempInstances", exampleSet.getLabel(), true);
try {
LogService.logMessage(getName() + ": Building Weka classifier.", LogService.MINIMUM);
classifier.buildClassifier(instances);
} catch (Exception e) {
throw new UserError(this, e, 905, new Object[] {operatorName, e});
}
return new WekaClassifier(exampleSet.getLabel(), classifier, useDist);
}
public String getWekaLearnerName() {
return getParameterAsString("weka_learner_name");
}
public String[] getWekaParameters() {
List wekaParameters = getParameterList("weka_parameters");
return WekaTools.getWekaParameters(wekaParameters);
}
public List getParameterTypes() {
List types = super.getParameterTypes();
ParameterType type = new ParameterTypeStringCategory("weka_learner_name", "The fully qualified classname of the weka classifier.", WEKA_CLASSIFIERS);
type.setExpert(false);
types.add(type);
types.add(new ParameterTypeList("weka_parameters", "Parameters for the Weka classifier as described in the Weka manual.", new ParameterTypeString(null, null)));
types.add(new ParameterTypeBoolean("use_distribution", "If set to true, the prediction of the model will not be the class, but the confidence for that class.", false));
return types;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -