📄 wekametalearner.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.learner.weka;
import edu.udo.cs.yale.operator.parameter.*;
import edu.udo.cs.yale.operator.IODescription;
import edu.udo.cs.yale.operator.IOObject;
import edu.udo.cs.yale.operator.OperatorException;
import edu.udo.cs.yale.operator.IllegalInputException;
import edu.udo.cs.yale.operator.OperatorChain;
import edu.udo.cs.yale.operator.UserError;
import edu.udo.cs.yale.operator.learner.Learner;
import edu.udo.cs.yale.operator.learner.Model;
import edu.udo.cs.yale.operator.performance.PerformanceVector;
import edu.udo.cs.yale.example.Attribute;
import edu.udo.cs.yale.example.AttributeWeights;
import edu.udo.cs.yale.example.Example;
import edu.udo.cs.yale.example.ExampleReader;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.tools.Ontology;
import edu.udo.cs.yale.tools.LogService;
import edu.udo.cs.yale.tools.WekaTools;
import weka.classifiers.Classifier;
import weka.core.Instances;
import java.io.IOException;
import java.util.List;
import java.util.Iterator;
/** This operator can build all meta classifiers from the
* <a href="http://www.cs.waikato.ac.nz/~ml/weka/">Weka</a> package.<br/>
* The classifier type can be selected by the parameter <var>weka_learner_name</var>.
* Parameters can be passed to the Weka classifier using the Yale parameter list
* <var>weka_parameters</var>. The leading dash "-" for the keys must be omitted.
* See the Weka javadoc for classifier and parameter descriptions.<br/>
*
* The inner learning scheme must be emebedded as operator child. This is a more straightforward
* and easy to use than the usage of a normal Weka learner and specifying the inner scheme and its
* parameters as parameters of the meta learning scheme. See {@link WekaLearner} for details.
*
* All Weka meta learning schemes which uses one inner learning scheme can be used with this operator.
* Some learning schemes need more than one inner operator or other parameters and must be used by using the
* {@link WekaLearner} with parameters. These are Grading, MultiScheme, RegressionByDiscretization, and Vote.
* Other meta learning schemes can only be used for certain learning types like classification or regression.
*
* @version $Id: WekaMetaLearner.java,v 1.2 2004/08/27 11:57:42 ingomierswa Exp $
*/
public class WekaMetaLearner extends OperatorChain implements Learner {
private static final Class[] INPUT_CLASSES = { ExampleSet.class };
private static final Class[] OUTPUT_CLASSES = { Model.class };
public static final String[] WEKA_CLASSIFIERS = WekaTools.getWekaClasses(weka.classifiers.Classifier.class, ".meta.", true);
/** Iterates over all classes <i>i</i>. The
* inner Learner is notified about the current class by setPositiveLabelIndex(i). Then
* the learning algorithm is applied. A MultiModel is created from the generated models.
*/
public IOObject[] apply() throws OperatorException {
ExampleSet exampleSet = (ExampleSet)getInput(ExampleSet.class);
Model model = learn(exampleSet);
String filename = getParameterAsString("model_file");
try {
if (filename != null) model.writeModel(getExperiment().resolveFileName(filename));
} catch (IOException e) {
LogService.logMessage("WekaMetaLearner'" + getName() + "': " +
"Cannot write model to file!", LogService.ERROR);
}
return new IOObject[] { model };
}
public Model learn(ExampleSet exampleSet) throws OperatorException {
String operatorName = getParameterAsString("weka_meta_learner_name");
String[] parameters = getWekaParameters();
Classifier classifier = null;
try {
classifier = Classifier.forName(operatorName, parameters);
} catch (Exception e) {
throw new UserError(this, e, 904, new Object[] { operatorName, e});
}
LogService.logMessage(getName() + ": Converting to Weka instances.", LogService.MINIMUM);
Instances instances = WekaTools.toWekaInstances(exampleSet, "TempInstances", exampleSet.getLabel(), true);
try {
LogService.logMessage(getName() + ": Building Weka classifier.", LogService.MINIMUM);
classifier.buildClassifier(instances);
} catch (Exception e) {
throw new UserError(this, e, 905, new Object[] {operatorName, e});
}
boolean useDist = getParameterAsBoolean("use_distribution");
return new WekaClassifier(exampleSet.getLabel(), classifier, useDist);
}
public String[] getWekaParameters() {
List wekaParameters = getParameterList("weka_parameters");
String[] parameters = WekaTools.getWekaParameters(wekaParameters);
String[] innerParameters = ((WekaLearner)getOperator(0)).getWekaParameters();
int n = 0;
String[] result = new String[parameters.length + 2 + innerParameters.length];
for (int i = 0; i < parameters.length; i++)
result[n++] = parameters[i];
result[n++] = "-W";
result[n++] = ((WekaLearner)getOperator(0)).getWekaLearnerName();
for (int i = 0; i < innerParameters.length; i++)
result[n++] = "-" + parameters[i];
return result;
}
public int getNumberOfSteps() { return 1; }
public int getMinNumberOfInnerOperators() { return 1; }
public int getMaxNumberOfInnerOperators() { return 1; }
public Class[] getOutputClasses() { return OUTPUT_CLASSES; }
public Class[] getInputClasses() { return INPUT_CLASSES; }
public boolean canCalculateWeights() { return false; }
public AttributeWeights getWeights(ExampleSet exampleSet) { return null; }
public boolean canEstimatePerformance() { return false; }
public PerformanceVector getEstimatedPerformance() { return null; }
public Class[] checkIO(Class[] input) throws IllegalInputException {
if (!(getOperator(0) instanceof WekaLearner))
throw new IllegalInputException(this,
"Inner operator of a Weka meta learning operator must be another Weka learning scheme.");
if (!IODescription.containsClass(ExampleSet.class, input))
throw new IllegalInputException(this, ExampleSet.class);
return OUTPUT_CLASSES;
}
public List getParameterTypes() {
List types = super.getParameterTypes();
ParameterType type = new ParameterTypeFile("model_file", "If this parameter is set, the model is written to a file.", true);
type.setExpert(false);
types.add(type);
type = new ParameterTypeStringCategory("weka_meta_learner_name", "The fully qualified classname of the weka classifier.", WEKA_CLASSIFIERS);
type.setExpert(false);
types.add(type);
types.add(new ParameterTypeList("weka_parameters", "Parameters for the Weka classifier as described in the Weka manual.", new ParameterTypeString(null, null)));
types.add(new ParameterTypeBoolean("use_distribution", "If set to true, the prediction of the model will not be the class, but the confidence for that class.", false));
return types;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -