📄 abstractlearner.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.learner;
import edu.udo.cs.yale.operator.OperatorException;
import edu.udo.cs.yale.operator.UserError;
import edu.udo.cs.yale.operator.parameter.*;
import edu.udo.cs.yale.operator.learner.Model;
import edu.udo.cs.yale.operator.Operator;
import edu.udo.cs.yale.operator.IOObject;
import edu.udo.cs.yale.operator.performance.PerformanceCriterion;
import edu.udo.cs.yale.operator.performance.PerformanceVector;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.example.Example;
import edu.udo.cs.yale.example.Attribute;
import edu.udo.cs.yale.example.AttributeWeights;
import edu.udo.cs.yale.tools.LogService;
import edu.udo.cs.yale.tools.Ontology;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
/** A <tt>Learner</tt> is an operator that encapsulates the learning step of a machine learning
* method. Some Learners may be capable of estimating the performance of the generated model.
* In that case, they additionally return a
* {@link edu.udo.cs.yale.operator.performance.PerformanceVector}. Some other learners can calculate a
* weight vector for all used features.
*
* @author Ingo
* @version $Id: AbstractLearner.java,v 2.6 2004/09/14 08:39:06 ingomierswa Exp $
*/
public abstract class AbstractLearner extends Operator implements Learner {
public static final String[] TASK_TYPES = { "auto", "regression", "pattern" };
public static final int AUTO = 0;
public static final int REGRESSION = 1;
public static final int PATTERN = 2;
private static final Class[] INPUT_CLASSES = { ExampleSet.class };
/** Returns true iff the learner can generate a performance vector during training. */
public boolean canEstimatePerformance() { return false; }
public PerformanceVector getEstimatedPerformance() { return null; }
/** Returns true iff the learner can generate a attribute weight vector. */
public boolean canCalculateWeights() { return false; }
/** Returns the calculated weight vectors. */
public AttributeWeights getWeights(ExampleSet exampleSet) { return null; }
/** Trains a model useing an ExampleSet from the input. The model is saved in <tt>model_file</tt>
* if given. Uses the method learn(ExampleSet).
*/
public IOObject[] apply() throws OperatorException {
String modelFile = getParameterAsString("model_file");
ExampleSet exampleSet = (ExampleSet)getInput(ExampleSet.class);
Attribute labelAttribute = exampleSet.getLabel();
if (labelAttribute == null) {
throw new UserError(this, 105, new Object[0]);
}
if (exampleSet.getNumberOfAttributes()==0) {
throw new UserError(this, 106, new Object[0]);
}
List results = new LinkedList();
Model model = learn(exampleSet);
results.add(model);
try {
if (modelFile != null) model.writeModel(getExperiment().resolveFileName(modelFile));
} catch (IOException e) {
throw new UserError(this, e, 303, new Object[] {modelFile, e.getMessage() });
}
// weights must be calculated _after_ learning
if (canCalculateWeights()) {
AttributeWeights weights = getWeights(exampleSet);
if (weights != null)
results.add(weights);
}
if (canEstimatePerformance()) {
PerformanceVector perfVector = getEstimatedPerformance();
if (perfVector != null)
results.add(perfVector);
}
IOObject[] resultArray = new IOObject[results.size()];
results.toArray(resultArray);
return resultArray;
}
public Class[] getInputClasses() { return INPUT_CLASSES; }
public Class[] getOutputClasses() {
List classList = new LinkedList();
classList.add(Model.class);
if (canEstimatePerformance()) classList.add(PerformanceVector.class);
if (canCalculateWeights()) classList.add(AttributeWeights.class);
Class[] result = new Class[classList.size()];
classList.toArray(result);
return result;
}
/** Returns <tt>true</tt>, if the learning task at hand is a classification task, and <tt>false</tt>
* otherwise. A learning task is a classification task (and no regression task), if
* <code>userOptionTaskType</code> is not <code>AUTO</code>, it determines the task type.
* If it does not match the type of the label, a warning is issues. Otherwise the task type
* is classification iff the label attribute is nominal. */
protected boolean taskIsClassification(int userOptionTaskType,
ExampleSet exampleSet) throws OperatorException {
Attribute labelAttribute = exampleSet.getLabel();
boolean labelIsNominal = Ontology.ATTRIBUTE_VALUE_TYPE.isA(labelAttribute.getValueType(), Ontology.NOMINAL);
switch (userOptionTaskType) {
case REGRESSION:
if (labelIsNominal)
LogService.logMessage(getName() + ": Applying regression to nominal data.", LogService.WARNING);
return false;
case PATTERN:
if (!labelIsNominal) {
LogService.logMessage(getName() + ": Applying classification to numerical data.", LogService.WARNING);
}
if (labelAttribute.getValues().size() != 2) {
LogService.logMessage(getName() + ": Class attribute should have exactly two values, but has " +
labelAttribute.getValues().size() +
" class values. (Ignore warning in MultiClassLearner!)", LogService.WARNING);
}
return true;
case AUTO:
default:
if (labelIsNominal) {
if (labelAttribute.getValues().size() != 2) {
LogService.logMessage(getName() + ": Class attribute should have exactly two values, but has " +
labelAttribute.getValues().size() +
" class values. (Ignore warning in MultiClassLearner!)", LogService.WARNING);
}
return true;
} else {
return false;
}
}
}
public List getParameterTypes() {
List types = super.getParameterTypes();
ParameterType type = new ParameterTypeFile("model_file", "If this parameter is set, the model is written to a file.", true);
type.setExpert(false);
types.add(type);
return types;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -