📄 abstractmysvmmodel.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.learner.kernel;
import edu.udo.cs.yale.operator.learner.IOModel;
import edu.udo.cs.yale.Statistics;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.example.ExampleReader;
import edu.udo.cs.yale.example.Example;
import edu.udo.cs.yale.example.Attribute;
import edu.udo.cs.yale.operator.OperatorException;
import edu.udo.cs.yale.gui.PlotterPanel;
import edu.udo.cs.yale.gui.Plotter;
import edu.udo.cs.mySVM.SVM.*;
import edu.udo.cs.mySVM.Kernel.*;
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
import java.io.IOException;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.Collections;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/** The abstract superclass for the SVM models by Stefan Rueping.
*
* @version $Id: AbstractMySVMModel.java,v 1.2 2004/08/27 11:57:39 ingomierswa Exp $
*/
public abstract class AbstractMySVMModel extends IOModel {
private class AlphaValue implements Comparable {
private double alpha;
private String id;
public AlphaValue(String id, double alpha) {
this.id = id;
this.alpha = alpha;
}
public String getId() { return id; }
public double getAlpha() { return alpha; }
public int compareTo(Object o) {
return (-1) * Double.compare(this.alpha, ((AlphaValue)o).alpha);
}
}
private edu.udo.cs.mySVM.Examples.ExampleSet model;
private Kernel kernel;
private int kernelType;
public AbstractMySVMModel(Attribute labelAttribute) {
super(labelAttribute);
}
public AbstractMySVMModel(Attribute labelAttribute,
edu.udo.cs.mySVM.Examples.ExampleSet model,
Kernel kernel,
int kernelType) {
super(labelAttribute);
this.model = model;
this.kernel = kernel;
this.kernelType = kernelType;
}
/** Creates a new SVM for prediction. */
public abstract SVMInterface createSVM();
/** Sets the correct prediction to the example from the result value of the SVM. */
public abstract void setPrediction(Example example, double prediction);
/** Reads the support vectors and the kernel from the input stream. */
public void readData(ObjectInputStream in) throws IOException {
// read SVs
this.model = new edu.udo.cs.mySVM.Examples.ExampleSet(in);
// read kernel
int kernelType = in.readInt();
int cacheSize = in.readInt();
this.kernel = AbstractMySVMLearner.createKernel(kernelType);
this.kernel.readKernelParameters(in);
this.kernel.init(model, cacheSize);
}
/** Writes the support vectors and the kernel into the input stream. */
public void writeData(ObjectOutputStream out) throws IOException {
// write SVs
model.writeSupportVectors(out);
// write kernel
out.writeInt(kernelType);
out.writeInt(kernel.getCacheSize());
kernel.writeKernelParameters(out);
}
public void apply(ExampleSet exampleSet) throws OperatorException {
edu.udo.cs.mySVM.Examples.ExampleSet toPredict =
new edu.udo.cs.mySVM.Examples.ExampleSet(exampleSet, model.getMeanVariances());
SVMInterface svm = createSVM();
svm.init(kernel, model);
svm.predict(toPredict);
// set predictions from toPredict
ExampleReader reader = exampleSet.getExampleReader();
int k = 0;
while (reader.hasNext()) {
//System.out.println("Prediction: " + toPredict.get_y(k));
setPrediction(reader.next(), toPredict.get_y(k++));
}
}
public String toString() {
return model.toString(0, false);
}
public String toResultString() {
if (model.count_examples() < 500)
return model.toString(true);
else
return model.toString(500, true) + "\n...";
}
/** Returns a html label with a table view or a plotter for statistic view. */
public Component getVisualisationComponent() {
final JPanel mainPanel = new JPanel();
mainPanel.setLayout(new BorderLayout());
// html table view
final JLabel label = new JLabel("<html>" + toHTML(toResultString()) + "</html>");
label.setBorder(javax.swing.BorderFactory.createEmptyBorder(11,11,11,11));
label.setFont(label.getFont().deriveFont(java.awt.Font.PLAIN));
mainPanel.add(label, BorderLayout.CENTER);
Statistics stats = new Statistics("JMySVM model");
String[] columnNames = new String[] { "counter", "alpha", "abs(alpha)" };
stats.init(columnNames);
java.util.List alphaValues = new LinkedList();
java.util.List absAlphaValues = new LinkedList();
for (int i = 0; i < model.count_examples(); i++) {
double alpha = model.get_alpha(i);
if (alpha != 0.0d) {
alphaValues.add(new AlphaValue(model.getId(i), alpha));
absAlphaValues.add(new AlphaValue(model.getId(i), Math.abs(alpha)));
}
}
Collections.sort(alphaValues);
Collections.sort(absAlphaValues);
Iterator i = alphaValues.iterator();
Iterator j = absAlphaValues.iterator();
int counter = 0;
while (i.hasNext() && j.hasNext()) {
AlphaValue currentAlpha = (AlphaValue)i.next();
AlphaValue currentAbsAlpha = (AlphaValue)j.next();
stats.add(currentAlpha.getId(), new Double[] { new Double(counter++),
new Double(currentAlpha.getAlpha()),
new Double(currentAbsAlpha.getAlpha()) });
}
final PlotterPanel plotterPanel = new PlotterPanel(stats);
// toggle radio button for views
final JRadioButton tableButton = new JRadioButton("table view", true);
tableButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
if (tableButton.isSelected()) {
mainPanel.remove(plotterPanel);
mainPanel.add(label, BorderLayout.CENTER);
mainPanel.repaint();
}
}
});
final JRadioButton plotButton = new JRadioButton("plot view", false);
plotButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
if (plotButton.isSelected()) {
mainPanel.remove(label);
mainPanel.add(plotterPanel, BorderLayout.CENTER);
mainPanel.repaint();
}
}
});
ButtonGroup group = new ButtonGroup();
group.add(tableButton);
group.add(plotButton);
JPanel togglePanel = new JPanel(new FlowLayout(FlowLayout.LEFT));
togglePanel.add(tableButton);
togglePanel.add(plotButton);
mainPanel.add(togglePanel, BorderLayout.NORTH);
return mainPanel;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -