📄 classificationbyregression.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.learner.meta;
import edu.udo.cs.yale.operator.parameter.*;
import edu.udo.cs.yale.operator.IllegalInputException;
import edu.udo.cs.yale.operator.Operator;
import edu.udo.cs.yale.operator.OperatorChain;
import edu.udo.cs.yale.operator.OperatorException;
import edu.udo.cs.yale.operator.IOObject;
import edu.udo.cs.yale.operator.IOContainer;
import edu.udo.cs.yale.operator.IODescription;
import edu.udo.cs.yale.operator.UserError;
import edu.udo.cs.yale.operator.learner.Learner;
import edu.udo.cs.yale.operator.learner.Model;
import edu.udo.cs.yale.operator.performance.PerformanceVector;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.example.ExampleReader;
import edu.udo.cs.yale.example.Example;
import edu.udo.cs.yale.example.Attribute;
import edu.udo.cs.yale.tools.TempFileService;
import edu.udo.cs.yale.tools.LogService;
import edu.udo.cs.yale.tools.Ontology;
import edu.udo.cs.yale.tools.math.RunVector;
import java.io.File;
import java.io.IOException;
import java.util.List;
/** For a classified dataset (with possibly more than two classes) builds a classifier
* using a regression method which is specified by the inner operator. For each
* class {@yale.math i} a regression model is trained after setting the label to {@yale.math +1} if
* the label equals {@yale.math i} and to {@yale.math -1} if it is not. Then the regression models
* are combined into a classification model. In order to determine
* the prediction for an unlabeled example, all models are applied
* and the class belonging to the regression model which predicts the
* greatest value is chosen.
* <br />
* If the parameter <code>estimate_performance</code> is used, this operator will build
* the average of the (estimated) {@link PerformanceVector}s returned by its inner
* operator and return it as an additional output. Please note, that this estimation is
* not a reliable estimation for the true performance, and should only be used to guide
* heuristics or to get hints which of two multi-class learners is better. Especially they
* cannot be used to compare them with estimated performances of other learners. Example: Assume a
* dataset with five uniformly distributed classes and a default learner which always returns the
* majority class. This learner will achieve an accuracy of roughly 4/5, which also yields an
* average of 4/5. Despite this, the combined multiclass model will only have an accuracy of 1/5.
*
* @see edu.udo.cs.yale.operator.learner.meta.MultiClassLearner
* @version $Id: ClassificationByRegression.java,v 1.3 2004/08/27 11:57:41 ingomierswa Exp $
*/
public class ClassificationByRegression extends OperatorChain {
private static final Class[] INPUT_CLASSES = { ExampleSet.class };
private int numberOfClasses;
public IOObject[] apply() throws OperatorException {
ExampleSet inputSet = (ExampleSet)getInput(ExampleSet.class);
Attribute classLabel = inputSet.getLabel();
if (classLabel == null) {
throw new UserError(this, 105, new Object[0]);
}
numberOfClasses = classLabel.getValues().size();
Model[] models = new Model[numberOfClasses];
String filename = getParameterAsString("model_file");
Operator learner = getOperator(0);
ExampleSet eSet = (ExampleSet)inputSet.clone();
Attribute tempLabel = new Attribute("temp_regression_label");
tempLabel.setValueType(Ontology.REAL);
eSet.getExampleTable().addAttribute(tempLabel);
eSet.setLabel(tempLabel);
RunVector runVector = null;
if (getParameterAsBoolean("estimate_performance")) {
runVector = new RunVector();
}
for (int i = 0; i < numberOfClasses; i++) {
// 1. Set regression labels
ExampleReader r = eSet.getExampleReader();
while (r.hasNext()) {
Example e = r.next();
if (e.getValue(classLabel) == i + Attribute.FIRST_CLASS_INDEX) {
e.setValue(tempLabel, +1.0);
} else {
e.setValue(tempLabel, -1.0);
}
}
// 2. Apply learner
IOContainer learnResult = learner.apply(getInput().append(new IOObject[] { eSet }));
models[i] = (Model)learnResult.getInput(Model.class);
if (runVector != null) {
runVector.addVector((PerformanceVector)learnResult.getInput(PerformanceVector.class));
}
}
Model multiModel = new MultiModelByRegression(classLabel, models);
try {
if (filename != null) multiModel.writeModel(getExperiment().resolveFileName(filename));
} catch (IOException e) {
LogService.logMessage("MultiClassLearner'" + getName() + "': " +
"Cannot write MultiModel into file '"+filename+"'!", LogService.ERROR);
}
if (runVector != null) {
return new IOObject[] { multiModel, runVector.average() };
} else {
return new IOObject[] { multiModel };
}
}
public Class[] getInputClasses() { return INPUT_CLASSES; }
public Class[] getOutputClasses() {
if (getParameterAsBoolean("estimate_performance")) {
return new Class[] { Model.class, PerformanceVector.class };
} else {
return new Class[] { Model.class };
}
}
/** Ok if the only inner operator returns a learner. */
public Class[] checkIO(Class[] input) throws IllegalInputException {
Operator operator = getOperator(0);
if (!IODescription.containsClass(ExampleSet.class, input))
throw new IllegalInputException(this, operator, ExampleSet.class);
Class[] innerOutput = operator.checkIO(new Class[] { ExampleSet.class });
if (!IODescription.containsClass(Model.class, innerOutput))
throw new IllegalInputException(this, operator, Model.class);
if (getParameterAsBoolean("estimate_performance")) {
if (!IODescription.containsClass(PerformanceVector.class, innerOutput))
throw new IllegalInputException(this, operator, PerformanceVector.class);
return new Class[] { Model.class, PerformanceVector.class };
} else {
return new Class[] { Model.class };
}
}
/** Returns the maximum number of innner operators. */
public int getMaxNumberOfInnerOperators() { return 1; }
/** Returns the minimum number of innner operators. */
public int getMinNumberOfInnerOperators() { return 1; }
public int getNumberOfSteps() {
return getNumberOfChildrensSteps() * numberOfClasses + 1;
}
public List getParameterTypes() {
List types = super.getParameterTypes();
ParameterType type = new ParameterTypeFile("model_file", "If this parameter is set, the model is written to a file.", true);
type.setExpert(false);
types.add(type);
types.add(new ParameterTypeBoolean("estimate_performance", "If this parameter is set to true, the average of the performance estimates of the inner operator model is returned as an additional output.", false));
return types;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -