📄 multimodelbyregression.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.learner.meta;
import edu.udo.cs.yale.operator.OperatorException;
import edu.udo.cs.yale.operator.learner.IOModel;
import edu.udo.cs.yale.operator.learner.Model;
import edu.udo.cs.yale.example.Attribute;
import edu.udo.cs.yale.example.Example;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.example.ExampleReader;
import edu.udo.cs.yale.tools.LogService;
import java.io.*;
/** MultiModels are used for multi class learning tasks. A MultiModel contains a set of Models that can
* handle only two-class decisions. */
public class MultiModelByRegression extends IOModel {
public static final String ID = "YALE MultiModel";
private static final int FILE_MODEL = 1;
private static final int IO_MODEL = 2;
private Model[] models;
public MultiModelByRegression(Attribute label, Model[] models) {
super(label);
this.models = models;
}
public int getNumberOfModels() {
return models.length;
}
/** Returns a binary decision model for the given classification index. */
public Model getModel(int index) {
return models[index];
}
/** Iterates over all classes of the label and applies one model for each class. For each example
* the predicted label is determined by choosing the model with the highest confidence. */
public void apply(ExampleSet exampleSet) throws OperatorException {
ExampleSet[] eSet = new ExampleSet[getNumberOfModels()];
for (int i = 0; i < getNumberOfModels(); i++) {
Model model = getModel(i);
eSet[i] = (ExampleSet)exampleSet.clone();
Attribute predLabel = model.createPredictedLabel(eSet[i]);
model.apply(eSet[i]);
}
ExampleReader[] reader = new ExampleReader[eSet.length];
for (int r = 0; r < reader.length; r++)
reader[r] = eSet[r].getExampleReader();
ExampleReader originalReader = exampleSet.getExampleReader();
while (originalReader.hasNext()) {
double bestLabel = Double.NaN;
double highestFunctionValue = Double.NEGATIVE_INFINITY;
for (int k = 0; k < reader.length; k++) {
double functionValue = reader[k].next().getPredictedLabel();
if (functionValue > highestFunctionValue) {
highestFunctionValue = functionValue;
bestLabel = k + Attribute.FIRST_CLASS_INDEX;
}
}
originalReader.next().setPredictedLabel(bestLabel);
}
}
/** Writes the models subsequently to the output stream. */
public void writeData(ObjectOutputStream out) throws IOException {
out.writeInt(models.length);
for (int i = 0; i < models.length; i++) {
models[i].writeModel(out);
}
}
/** Reads all models from the file. */
public void readData(ObjectInputStream in) throws IOException {
this.models = new Model[in.readInt()];
for (int i = 0; i < models.length; i++) {
models[i] = Model.readModel(in);
}
}
public String getIdentifier() { return ID; }
public String toString() {
String result = super.toString() + "\n";
for (int i = 0; i < models.length; i++)
result += (i>0?"\n":"") + models[i].toString();
return result;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -