⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 weightedperformancemeasures.java

📁 一个很好的LIBSVM的JAVA源码。对于要研究和改进SVM算法的学者。可以参考。来自数据挖掘工具YALE工具包。
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/*
 *  YALE - Yet Another Learning Environment
 *  Copyright (C) 2001-2004
 *      Simon Fischer, Ralf Klinkenberg, Ingo Mierswa, 
 *          Katharina Morik, Oliver Ritthoff
 *      Artificial Intelligence Unit
 *      Computer Science Department
 *      University of Dortmund
 *      44221 Dortmund,  Germany
 *  email: yale-team@lists.sourceforge.net
 *  web:   http://yale.cs.uni-dortmund.de/
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License as 
 *  published by the Free Software Foundation; either version 2 of the
 *  License, or (at your option) any later version. 
 *
 *  This program is distributed in the hope that it will be useful, but
 *  WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 *  General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
 *  USA.
 */
package edu.udo.cs.yale.operator.learner.meta;

import java.awt.image.RescaleOp;

import edu.udo.cs.yale.example.Attribute;
import edu.udo.cs.yale.example.Example;
import edu.udo.cs.yale.example.ExampleReader;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.operator.OperatorException;

/**
 * This private class cares about <i>weighted</i> performance measures as
 * used by the <code>BayesianBoosting</code> algorithm and the similarly
 * working <code>ModelBasedSampling</code> operator.
 *
 * @author scholz
 */
public class WeightedPerformanceMeasures {

    /** This constant is used to express that no examples have been observed. */
    public static final double RULE_DOES_NOT_APPLY = Double.NaN;

    private double[] predictions;
    private double[] labels;
    private double[][] pred_label;

    /**
     * Constructor. Reads an example set, calculates its weighted performance
     * values and caches them internally for later requests.
     * @param exampleSet the <code>ExampleSet</code> this object shall hold the performance
     *        measures for
     */
    public WeightedPerformanceMeasures(ExampleSet exampleSet)
    	throws OperatorException
    {			
		{
		    int numberOfClasses = exampleSet.getLabel().getValues().size();
	    	this.labels = new double[numberOfClasses]; 
		
		    // It is not necessary to interpret the result of the embedded learner as
		    // predictions. Especially it not mandatory to have as many "predictions" as
	    	// labels. However, without any further information let's assume the simple
		    // case, namely that the learner tries to predict the label with the result
		    // of the model:
	    	this.predictions = new double[numberOfClasses];
				
		    // This array stores all combinations:
		    this.pred_label = new double[this.predictions.length][this.labels.length];
		}
			
		ExampleReader reader = exampleSet.getExampleReader();
		double sumOfWeights = 0;
				
		if (exampleSet.getPredictedLabel().isNumerical()) {
			// the used model gave confidence-predictions, only supported for the binary case
			if (this.predictions.length != 2) {
				throw new OperatorException("Soft base classifiers only supported for binary classification problems.");
			}
			while (reader.hasNext()) {	
			    Example exa = reader.next();
	    		double exaW = exa.getWeight();
		    	sumOfWeights += exaW;
			    
			    int eLabel = (int) (exa.getLabel() - Attribute.FIRST_CLASS_INDEX);
		    	
		    	double ePred = exa.getPredictedLabel();
		    	if (ePred < 0)
		    		ePred = 0;
		    	else if (ePred > 1)
		    		ePred = 1;
		    	    	
			    this.labels[eLabel] += exaW;
		    	
		    	// These mappings are obviously problematic:
		    	this.predictions[0] += (1 - ePred) * exaW;
		    	this.predictions[1] += ePred * exaW;

		    	this.pred_label[0][eLabel] += (1 - ePred) * exaW;
		    	this.pred_label[1][eLabel] += ePred * exaW;
			}		
		}
		else while (reader.hasNext()) {
			// crisp base classifier, multi-class prediction problems possible
		    Example exa = reader.next();
	    	double exaW = exa.getWeight();
		    sumOfWeights += exaW;
		    int eLabel = (int) (exa.getLabel() - Attribute.FIRST_CLASS_INDEX);
	    	int ePred  = (int) (exa.getPredictedLabel() - Attribute.FIRST_CLASS_INDEX);

		    this.labels[eLabel] += exaW;
		    this.predictions[ePred] +=exaW;
	    	this.pred_label[ePred][eLabel] +=exaW;
		}
			
		if (sumOfWeights > 0) {
		    // If sum is 0 all examples have been "explained deterministically"!
	    	// Otherwise: Normalize!
		    for (int i=0; i<this.predictions.length; i++) {
				this.predictions[i] /= sumOfWeights;
				for (int j=0; j<this.labels.length; j++) {
				    this.pred_label[i][j] /= sumOfWeights;
				}
		    }
				
	    	for (int j=0; j<this.labels.length; j++) {
				this.labels[j] /= sumOfWeights;
		    }
		}
		else { // Assign default values to all fields.
		    double defaultPredProb = 1 / ((double) this.predictions.length);
		    double defaultLabelProb = 1 / ((double) this.labels.length);
	    	double defaultPredLabelProb = defaultPredProb * defaultLabelProb;

		    for (int i=0; i<this.predictions.length; i++) {
				this.predictions[i] = defaultPredProb;
				for (int j=0; j<this.labels.length; j++) {
				    this.pred_label[i][j] = defaultPredLabelProb;
				}
		    }				
		    for (int j=0; j<this.labels.length; j++) {
				this.labels[j] = defaultLabelProb;
		    }
		}
    }

    /**
     * @return the number of classes, namely different values of this
     * object's example set's label attribute
     */
    public int getNumberOfLabels() {
		return this.labels.length;			
    }

    /**
     * @return number of predictions or nominal classes predicted by
     * the embedded learner. Not necessarily the same as the number of
     * class labels.
     */		
    public int getNumberOfPredictions() {
		return this.predictions.length;	
    }

    /**
     * Method to query for the probability of one of the prediction/label subsets
     * &quot;label=Attribute.FIRST_CLASS_INDEX, prediction=...&quot;, ...
     * @param label the (correct) class label of the example as it comes from the
     *        internal index
     * @param prediction the boolean value predicted by the model (premise)
     *        (internal index number)
     * @return the joint probability of label and prediction
     */
    public double getProbability(int label, int prediction) {
		return this.pred_label[prediction - Attribute.FIRST_CLASS_INDEX][label - Attribute.FIRST_CLASS_INDEX];
    }

    /**
     * Method to query for the &quot;prior&quot; probability of one of the labels.
     * @param label the nominal class label (internal YALE index)
     * @return the probability of seeing an example with this label
     */
    public double getProbabilityLabel(int label) {
		return this.labels[label - Attribute.FIRST_CLASS_INDEX];
    }
		
    /**
     * Method to query for the &quot;prior&quot; probability of one of the predictions.
     * @param premise the prediction of a model (internal YALE index)
     * @return the probability of drawing an example so that the model makes this prediction
     */
    public double getProbabilityPrediction(int premise) {
		return this.predictions[premise - Attribute.FIRST_CLASS_INDEX];
    }

    /** Helper method calculating the number of non-empty classes for a premise. */
    private int getNumOfClassesFor(int prediction) {
		int nonNulls = 0;
		for (int i=0; i<this.getNumberOfLabels(); i++) {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -