📄 averagemodel.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.learner.lazy;
import edu.udo.cs.yale.operator.learner.Model;
import edu.udo.cs.yale.example.Attribute;
import edu.udo.cs.yale.example.Example;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.example.ExampleReader;
import java.io.ObjectOutputStream;
import java.util.Iterator;
/** Average model simply calculates the average of the attributes as prediction. For classification problems
* the class value closest to the prediction is returned.
*
* @version $Id: AverageModel.java,v 1.2 2004/08/27 11:57:40 ingomierswa Exp $
*/
public class AverageModel extends Model {
public AverageModel(Attribute label) {
super(label);
}
public void writeData(ObjectOutputStream out) {}
public void apply(ExampleSet exampleSet) {
ExampleReader reader = exampleSet.getExampleReader();
while (reader.hasNext()) {
Example example = reader.next();
// calc average
double average = 0.0d;
for (int i = 0; i < example.getNumberOfAttributes(); i++)
average += example.getValue(example.getAttribute(i));
average /= example.getNumberOfAttributes();
// set prediction for regression and determine class for classification tasks
if (exampleSet.getPredictedLabel().isNominal()) {
Attribute label = exampleSet.getPredictedLabel();
double minDistance = Double.POSITIVE_INFINITY;
int prediction = -1;
Iterator i = label.getValues().iterator();
while (i.hasNext()) {
String classValue = (String)i.next();
int classIndex = label.mapString(classValue);
double distance = Math.abs((double)classIndex - average);
if (distance < minDistance) {
minDistance = distance;
prediction = classIndex;
}
}
example.setPredictedLabel(prediction);
} else {
example.setPredictedLabel(average);
}
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -