📄 stats.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.learner.decisiontree.y45.j48;
import weka.core.*;
/**
* Class implementing a statistical routine needed by J48 to
* compute its error estimate.
*
* @author Eibe Frank (eibe@cs.waikato.ac.nz)
* @version $Revision: 1.3 $
*/
public class Stats {
/**
* Computes estimated extra error for given total number of instances
* and error using normal approximation to binomial distribution
* (and continuity correction).
*
* @param N number of instances
* @param e observed error
* @param CF confidence value
*/
public static double addErrs(double N, double e, float CF){
// Ignore stupid values for CF
if (CF > 0.5) {
System.err.println("WARNING: confidence value for pruning " +
" too high. Error estimate not modified.");
return 0;
}
// Check for extreme cases at the low end because the
// normal approximation won't work
if (e < 1) {
// Base case (i.e. e == 0) from documenta Geigy Scientific
// Tables, 6th edition, page 185
double base = N * (1 - Math.pow(CF, 1 / N));
if (e == 0) {
return base;
}
// Use linear interpolation between 0 and 1 like C4.5 does
return base + e * (addErrs(N, 1, CF) - base);
}
// Use linear interpolation at the high end (i.e. between N - 0.5
// and N) because of the continuity correction
if (e + 0.5 >= N) {
// Make sure that we never return anything smaller than zero
return Math.max(N - e, 0);
}
// Get z-score corresponding to CF
double z = Statistics.normalInverse(1 - CF);
// Compute upper limit of confidence interval
double f = (e + 0.5) / N;
double r = (f + (z * z) / (2 * N) +
z * Math.sqrt((f / N) -
(f * f / N) +
(z * z / (4 * N * N)))) /
(1 + (z * z) / N);
return (r * N) - e;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -