📄 infogainsplitcrit.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.learner.decisiontree.y45.j48;
import weka.core.*;
/**
* Class for computing the information gain for a given distribution.
*
* @author Eibe Frank (eibe@cs.waikato.ac.nz)
* @version $Revision: 1.3 $
*/
public final class InfoGainSplitCrit extends EntropyBasedSplitCrit{
/**
* This method is a straightforward implementation of the information
* gain criterion for the given distribution.
*/
public final double splitCritValue(Distribution bags) {
double numerator;
numerator = oldEnt(bags)-newEnt(bags);
// Splits with no gain are useless.
if (Utils.eq(numerator,0))
return Double.MAX_VALUE;
// We take the reciprocal value because we want to minimize the
// splitting criterion's value.
return bags.total()/numerator;
}
/**
* This method computes the information gain in the same way
* C4.5 does.
*
* @param distribution the distribution
* @param totalNoInst weight of ALL instances (including the
* ones with missing values).
*/
public final double splitCritValue(Distribution bags,double totalNoInst) {
double numerator;
double noUnknown;
double unknownRate;
int i;
noUnknown = totalNoInst-bags.total();
unknownRate = noUnknown/totalNoInst;
numerator = (oldEnt(bags)-newEnt(bags));
numerator = (1-unknownRate)*numerator;
// Splits with no gain are useless.
if (Utils.eq(numerator,0))
return 0;
return numerator/bags.total();
}
/**
* This method computes the information gain in the same way
* C4.5 does.
*
* @param distribution the distribution
* @param totalNoInst weight of ALL instances
* @param oldEnt entropy with respect to "no-split"-model.
*/
public final double splitCritValue(Distribution bags,double totalNoInst,
double oldEnt) {
double numerator;
double noUnknown;
double unknownRate;
int i;
noUnknown = totalNoInst-bags.total();
unknownRate = noUnknown/totalNoInst;
numerator = (oldEnt-newEnt(bags));
numerator = (1-unknownRate)*numerator;
// Splits with no gain are useless.
if (Utils.eq(numerator,0))
return 0;
return numerator/bags.total();
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -