📄 entropybasedsplitcrit.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.learner.decisiontree.y45.j48;
/**
* "Abstract" class for computing splitting criteria
* based on the entropy of a class distribution.
*
* @author Eibe Frank (eibe@cs.waikato.ac.nz)
* @version $Revision: 1.3 $
*/
public abstract class EntropyBasedSplitCrit extends SplitCriterion{
/** The log of 2. */
protected static double log2 = Math.log(2);
/**
* Help method for computing entropy.
*/
public final double logFunc(double num) {
// Constant hard coded for efficiency reasons
if (num < 1e-6)
return 0;
else
return num*Math.log(num)/log2;
}
/**
* Computes entropy of distribution before splitting.
*/
public final double oldEnt(Distribution bags) {
double returnValue = 0;
int j;
for (j=0;j<bags.numClasses();j++)
returnValue = returnValue+logFunc(bags.perClass(j));
return logFunc(bags.total())-returnValue;
}
/**
* Computes entropy of distribution after splitting.
*/
public final double newEnt(Distribution bags) {
double returnValue = 0;
int i,j;
for (i=0;i<bags.numBags();i++){
for (j=0;j<bags.numClasses();j++)
returnValue = returnValue+logFunc(bags.perClassPerBag(i,j));
returnValue = returnValue-logFunc(bags.perBag(i));
}
return -returnValue;
}
/**
* Computes entropy after splitting without considering the
* class values.
*/
public final double splitEnt(Distribution bags) {
double returnValue = 0;
int i;
for (i=0;i<bags.numBags();i++)
returnValue = returnValue+logFunc(bags.perBag(i));
return logFunc(bags.total())-returnValue;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -