📄 decisiontreelearner.java
字号:
/*
* YALE - Yet Another Learning Environment
* Copyright (C) 2001-2004
* Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,
* Katharina Morik, Oliver Ritthoff
* Artificial Intelligence Unit
* Computer Science Department
* University of Dortmund
* 44221 Dortmund, Germany
* email: yale-team@lists.sourceforge.net
* web: http://yale.cs.uni-dortmund.de/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
package edu.udo.cs.yale.operator.learner.decisiontree;
import edu.udo.cs.yale.example.ExampleReader;
import edu.udo.cs.yale.example.ExampleSet;
import edu.udo.cs.yale.example.SplittedExampleSet;
import edu.udo.cs.yale.example.Example;
import edu.udo.cs.yale.example.Attribute;
import edu.udo.cs.yale.example.Tools;
import edu.udo.cs.yale.tools.ParameterService;
import edu.udo.cs.yale.tools.LogService;
import edu.udo.cs.yale.tools.Ontology;
import edu.udo.cs.yale.operator.OperatorException;
import java.util.*;
/** DecisionTreeLearner ist an internal (i.e. pure Java) classification machine learning algorithm based on
* the ID3 algorithm by Quinlan. In each step the most promising attribute is determined by calculating
* the information gain. Then the example set is partitioned according to the values of this attribute
* and the algorithm is applied recursively on the partitions. The trees resulting from the recursive
* calls are attached as children together with their respective attribute values. Recursion stops
* when all examples of a subset have the same label or the subset becomes empty.
* <br/>
* Whereas ID3 can only handle categorical attributes, this implementation can also handle
* continuous attributes although this is not implemented efficiently. Compared with C4.5 it should
* be mentioned that it cannot deal with missing values and does not prune the tree.
* For numerical data we recommend to use the {@link edu.udo.cs.yale.operator.learner.weka.WekaLearner} with
* the J48 decision tree inducer.
*
* @yale.xmlclass DecisionTreeLearner
* @see edu.udo.cs.yale.operator.learner.decisiontree.Tree
* @author Ingo
* @version $Id: DecisionTreeLearner.java,v 2.3 2004/08/27 11:57:38 ingomierswa Exp $
*/
public class DecisionTreeLearner extends ID3Learner {
/** Erzeugt einen neuen Entscheidungsbaum aus dem gegebenem Attribut.
*/
Tree createNewDecisionTree(ExampleSet exampleSet, Attribute bestAttribute, boolean ratioGain, int defaultGoal) throws OperatorException {
// nominal
if (Ontology.ATTRIBUTE_VALUE_TYPE.isA(bestAttribute.getValueType(), Ontology.NOMINAL)) {
return super.createNewDecisionTree(exampleSet, bestAttribute, ratioGain, defaultGoal);
} else { // kontinuierlich
if (exampleSet.getSize() == 0) return null;
double threshold = Tools.getThreshold(exampleSet, bestAttribute);
SplittedExampleSet splitted = SplittedExampleSet.splitByAttribute(exampleSet, bestAttribute, threshold);
// make new decisionTree
Tree decisionTree = new Tree(exampleSet.getLabel(), bestAttribute);
splitted.selectSingleSubset(0); // less equal
Premise premise = new SimplePremise(bestAttribute, "<=", threshold);
Tree child = makeDecisionTree(splitted, ratioGain, defaultGoal);
if (child == null) child = new Tree(splitted.getLabel(), defaultGoal);
decisionTree.addChild(premise, child);
splitted.selectSingleSubset(1); // greater
premise = new SimplePremise(bestAttribute, ">", threshold);
child = makeDecisionTree(splitted, ratioGain, defaultGoal);
if (child == null) child = new Tree(splitted.getLabel(), defaultGoal);
decisionTree.addChild(premise, child);
// wenn alle Untermengen leer waren, so gib das default ziel zurueck.
return decisionTree;
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -