⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 coupling.c

📁 语音压缩算法
💻 C
字号:
/************************* MPEG-2 NBC Audio Decoder ************************** *                                                                           *"This software module was originally developed by AT&T, Dolby Laboratories, Fraunhofer Gesellschaft IIS and edited byYoshiaki Oikawa (Sony Corporation),Mitsuyuki Hatanaka (Sony Corporation)in the course of development of the MPEG-2 NBC/MPEG-4 Audio standard ISO/IEC 13818-7, 14496-1,2 and 3. This software module is an implementation of a part of one or more MPEG-2 NBC/MPEG-4 Audio tools as specified by the MPEG-2 NBC/MPEG-4 Audio standard. ISO/IEC  gives users of the MPEG-2 NBC/MPEG-4 Audio standards free license to this software module or modifications thereof for use in hardware or software products claiming conformance to the MPEG-2 NBC/MPEG-4Audio  standards. Those intending to use this software module in hardware or software products are advised that this use may infringe existing patents. The original developer of this software module and his/her company, the subsequent editors and their companies, and ISO/IEC have no liability for use of this software module or modifications thereof in an implementation. Copyright is not released for non MPEG-2 NBC/MPEG-4 Audio conforming products.The original developerretains full right to use the code for his/her  own purpose, assign or donate the code to a third party and to inhibit third party from using the code for non MPEG-2 NBC/MPEG-4 Audio conforming products. This copyright notice mustbe included in all copies or derivative works." Copyright(c)1996. *                                                                           * ****************************************************************************/#include "block.h"               /* handler, defines, enums */#include "interface.h"           /* handler, defines, enums */#include "mod_bufHandle.h"       /* handler, defines, enums */#include "reorderspecHandle.h"   /* handler, defines, enums */#include "tf_mainHandle.h"       /* handler, defines, enums */#include "all.h"                 /* structs */#include "nok_ltp_common.h"      /* structs */#include "tf_mainStruct.h"       /* structs */#if (CChans > 0)static	Float	    cc_gain_scale[4];static	int	    *cc_lpflag[CChans];static	int	    *cc_prstflag[CChans];static	PRED_STATUS *cc_sp_status[CChans];static	Float	    *cc_prev_quant[CChans];static	byte	    *cc_group[CChans];static	int	    nok_use_monopred;/* long term prediction */static	NOK_LT_PRED_STATUS *nok_cc_lt_status[Chans];static  NOK_LTP_DATA	*nok_cc_ltp[Chans];voidinit_cc(int use_monopred){  int i, ch;  cc_gain_scale[3] = 2.0;  /* predictor selection */  if (use_monopred)    nok_use_monopred = 1;  else    nok_use_monopred = 0;      /* initialize gain scale */  for (i=2; i>=0; i--)    cc_gain_scale[i] = sqrt(cc_gain_scale[i+1]);  /* coupling channel predictors */  for (ch = 0; ch < CChans; ch++) {    cc_lpflag[ch] = (int*)mal1(MAXBANDS*sizeof(*cc_lpflag[0]));    cc_prstflag[ch] = (int*)mal1((LEN_PRED_RSTGRP+1)*sizeof(*cc_prstflag[0]));    if (nok_use_monopred) {      cc_sp_status[ch] = (PRED_STATUS*)mal1(LN*sizeof(*cc_sp_status[0]));    } else {      nok_cc_sp_status[ch]  = (NOK_PRED_STATUS *)mal1(sizeof(*nok_sp_status[0]));    }    nok_cc_lt_status[ch]  = (NOK_LT_PRED_STATUS *)mal1(sizeof(*nok_cc_lt_status[0]));    nok_cc_ltp[ch]  = (NOK_LTP_DATA *)mal1(sizeof(*nok_cc_ltp[0]));    cc_prev_quant[ch] = (Float*)mal1(LN2*sizeof(*cc_prev_quant[0]));    cc_group[ch] = (byte*)mal1(MAXBANDS*sizeof(*cc_group[0]));    if (nok_use_monopred) {      for (i = 0; i < LN2; i++) {        init_pred_stat(&cc_sp_status[ch][i],                       PRED_ORDER,PRED_ALPHA,PRED_A,PRED_B);        cc_prev_quant[ch][i] = 0.;      }     } else {      for (i = 0; i < LN2; i++) {        nok_init_pred_stat(&nok_cc_sp_status[ch][i]);        cc_prev_quant[ch][i] = 0.;      }    }    nok_init_lt_pred (nok_cc_lt_status[ch]);  }}int getcc ( MC_Info*       mip,             byte*          cc_wnd,             Wnd_Shape*     cc_wnd_shape,             Float**        cc_coef,            Float*         cc_gain[CChans][Chans],            HANDLE_BUFFER  hVm,            HANDLE_BUFFER  hHcrSpecData,            HANDLE_HCR     hHcrInfo,            HANDLE_EP_INFO hEpInfo ){  int i, j, k, m, n, cpe, tag, cidx, ch, nele, nch;  int target[Chans], shared[Chans];  int cc_l, cc_r, cc_dom, cc_gain_ele_sign, ind_sw_cc, cgep, scl_idx,    sign, nsect, fac;  byte sect[2*MAXBANDS+1], cc_max_sfb[CChans];  short global_gain, factors[MAXBANDS];  Float scale;  Info *info;  TNS_frame_info tns;#ifdef  SRS    int dummy = 0;#endif  tag = GetBits(ELEMENT_INSTANCE_TAG,                  LEN_TAG,                hResilience,                hVm,                 hEpInfo );  if (default_config) {    cidx = mip->ncch;  }  else {    cidx = XCChans;	    /* default is scratch index */    for (i=0; i<mip->ncch; i++) {      if (mip->cch_tag[i] == tag)        cidx = i;    }  }      if (cidx >= CChans) {    printf( "Unanticipated coupling channel\n");    myexit("coupling");  }  /*  get ind_sw_cce flag */  ind_sw_cc = mip->GetBits(IND_SW_CCE_FLAG,                             LEN_IND_SW_CCEG,                           hResilience,                           hVm,                            hEpInfo );      /* coupled (target) elements */  nele = GetBits(NUM_COUPLED_ELEMENTS,                   LEN_NCCG,                 hResilience,                 hVm,                  hEpInfo );  nch = 0;  for (i=0; i<nele; i++) {    cpe = GetBits(CC_TARGET_IS_CPE,                    LEN_IS_CPEG,                  hResilience,                  hVm,                   hEpInfo );    tag = GetBits(CC_TARGET_TAG_SELECT,                    LEN_TAGG,                  hResilience,                  hVm,                   hEpInfo );    ch = ch_index(mip, cpe, tag);	    if (!cpe) {      target[nch] = ch;      shared[nch++] = 0;    }    else {      cc_l = GetBits(CC_L,                       LEN_CC_LRG,                     hResilience,                     hVm,                      hEpInfo );      cc_r = GetBits(CC_R,                       LEN_CC_LRG,                     hResilience,                     hVm,                      hEpInfo );      j = (cc_l<<1) | cc_r;      switch(j) {      case 0:	    /* shared gain list */        target[nch] = ch;        target[nch+1] = mip->ch_info[ch].paired_ch;        shared[nch] = 1;        shared[nch+1] = 1;        nch += 2;        break;      case 1:	    /* left channel gain list */        target[nch] = ch;        shared[nch] = 0;        nch += 1;        break;      case 2:	    /* right channel gain list */        target[nch+1] = mip->ch_info[ch].paired_ch;        shared[nch] = 0;        nch += 1;        break;      case 3:	    /* two gain lists */        target[nch] = ch;        target[nch+1] = mip->ch_info[ch].paired_ch;        shared[nch] = 0;        shared[nch+1] = 0;        nch += 2;        break;      }    }  }      /*     cc_com = GetBits(53,  LEN_CC_DOM) != CC_AFTER_TNS); */  cc_com = GetBits(CC_DOMAIN,                     LEN_CC_DOMG,                   hResilience,                   hVm );  cc_gain_ele_sign = GetBits(GAIN_ELEMENT_SIGN,                               LEN_CC_SGNG,                             hResilience,                             hVm );  scl_idx = GetBits(GAIN_ELEMENT_SCALE,                      LEN_CCH_GESG,                    hResilience,                    hVm );  /*   * coupling channel bitstream   * (equivalent to SCE)   */  fltclr(cc_coef[cidx], LN2);  memcpy(&info, winmap[cc_wnd[cidx]], sizeof(Info));  if (!getics ( info,                 0,                 &cc_wnd[cidx],                 &cc_wnd_shape[cidx].this_bk,                cc_group[cidx],                 cc_max_sfb[cidx],                 cc_lpflag[cidx],                 cc_prstflag[cidx],                &nsect,                 sect,                 cc_coef[cidx],                 &global_gain,                 factors,                 nok_cc_ltp[cidx],                &tns,#ifdef  SRS                dummy,#endif                bitStreamType,                hResilience,                hVm,                hHcrSpecData,                hHcrInfo,                hEpInfo) )    return -1;      /* coupling for first target channel(s) is already at   * correct scale   */  ch = shared[0] ? 2 : 1;  for (j=0; j<ch; j++)    for (i=0; i<MAXBANDS; i++)      cc_gain[cidx][target[j]][i] = 1.0;  /*   * bitstreams for target channel scale factors   */  for (; ch<nch; ) {    /* if needed, get common gain elment present */    cgep = ind_sw_cc ? 1 : GetBits(COMMON_GAIN_ELEMENT_PRESENT,                                     LEN_CCH_CGPG,                                   hResilience,                                   hVm,                                    hEpInfo );    if (cgep) {      /* common gain */      int t;      Hcb *hcb;      Huffman *hcw;      /*  get ind_sw_cce flag */      ind_sw_cc = mip->GetBits(IND_SW_CCE_FLAG,                                 LEN_IND_SW_CCEG,                               hResilience,                               hVm,                                hEpInfo );      /*  get just one scale factor */      hcb = &book[BOOKSCL];      hcw = hcb->hcw;      fac = 0;    /* dpcm relative to 0 */      t = decode_huff_cw(hcw,                          hResilience,                         hVm,                          0,                          hEpInfo);      fac += t - MIDFAC;    /* 1.5 dB */      /* recover stepsize */      scale = cc_gain_scale[scl_idx];      scale = pow(scale, fac);      /* copy to gain array */      n = shared[ch] ? 2 : 1;      for (m=0; m<n; m++) {        k=0;        for (i=0; i<info->nsbk; i++)          for (j=0; j<info->sfb_per_sbk[i]; j++)            cc_gain[cidx][target[ch]][k++] = scale;        ch++;      }    }    else {      /* must be dependently switched cce */      ind_sw_cc = 0;	          /* get scale factors       * use sectioning of coupling channel       */      hufffac ( info,                 cc_group[cidx],                 nsect,                 sect,                 global_gain,                 factors,                hVm,                hResilience,                 hEpInfo );      /* recover sign and stepsize */      scale = cc_gain_scale[scl_idx];      k=0;      for (i=0; i<info->nsbk; i++) {        for (j=0; j<info->sfb_per_sbk[i]; j++) {          fac = factors[k];          if (cc_gain_ele_sign) {            sign = fac & 1;            fac >>= 1;          }          else {            sign = 1;          }          scale = pow(scale, fac);          scale *= (sign==0) ? 1 : -1;          cc_gain[cidx][target[ch]][k++] = scale;        }      }      /* shared gain lists */      if ( shared[ch] ) {        for (i=0; i<MAXBANDS; i++)          cc_gain[cidx][target[ch+1]][k] =             cc_gain[cidx][target[ch]][k];        ch++;      }    }  }  /* process coupling channel the same as other channels,    * except that it can only be a SCE   */  if (nok_use_monopred) {    predict(info, mip->profile,            cc_lpflag[cidx], cc_sp_status[cidx],            cc_prev_quant[cidx], cc_coef[cidx]);    predict_reset(info, cc_prstflag[cidx], cc_sp_status, cc_prev_quant,                   cidx, cidx);  }  else {    nok_predict(info, mip->profile,                cc_lpflag[cidx], nok_cc_sp_status[cidx],                cc_prev_quant[cidx], cc_coef[cidx]);    nok_predict_reset(info, cc_prstflag[cidx], nok_cc_sp_status,                      cidx, cidx);  }  /* Long term prediction.  */  nok_lt_predict ( cc_wnd_shape[cidx].this_bk,                   nok_cc_ltp[cidx]->sbk_prediction_used,                   nok_cc_ltp[cidx]->sfb_prediction_used,                   nok_cc_ltp[cidx]->weight,                   nok_cc_ltp[cidx]->delay, cc_coef[cidx],                   BLOCK_LEN_LONG, BLOCK_LEN_MEDIUM, BLOCK_LEN_SHORT );  for (i=j=0; i<tns.n_subblocks; i++) {    tns_decode_subblock( cc_coef[cidx] + j,                         info->sfb_per_sbk[i],                         info->sbk_sfb_top[i],                         &(tns.info[i]) );    j += info->bins_per_sbk[i];  }  /* invert the cch to ch mapping */  for (i=0; i<nch; i++) {    mip->ch_info[target[i]].ncch = cidx+1;    mip->ch_info[target[i]].cch[cidx] = cidx;    mip->ch_info[target[i]].cc_dom = cc_dom;    mip->ch_info[target[i]].cc_ind[cidx] = ind_sw_cc;  }  if (default_config)    mip->ncch++;	  return 1;}#if (ICChans > 0)/* transform independently switched coupling channels into * time domain */voidind_coupling(MC_Info *mip, byte *wnd, Wnd_Shape *wnd_shape,             byte *cc_wnd, Wnd_Shape *cc_wnd_shape, Float **cc_coef, Float **cc_state){  int i, j, cidx, dep, ch, widx;  for (cidx=0; cidx<mip->ncch; cidx++)    if (mip->cc_ind[cidx]) {      Float data[LN2];      freq2time_adapt(cc_wnd[wn], &cc_wnd_shape[wn], cc_coef[cidx],                      cc_state[cidx], data);      fltcpy(cc_coef[cidx], data, LN2);    }}#endif	static voidmix_cc(Float *coef, Float *cc_coef, Float *cc_gain, int ind){  int nsbk, sbk, sfb, nsfb, k, top;  Float scale;  Info info = winmap[win];  if (!ind) {        /* frequency-domain coupling */    k = 0;    nsbk = info->nsbk;    for (sbk=0; sbk<nsbk; sbk++) {      nsfb = info->sfb_per_sbk[sbk];      for (sfb=0; sfb<nsfb; sfb++) {        top = info->sbk_sfb_top[sbk][sfb];        scale = *cc_gain++;        if (scale == 0) {          /* no coupling */          k = top;        }        else {          /* mix in coupling channel */          while (k<top) {            coef[k] += cc_coef[k] * scale;            k++;          }        }      }    }  }  else {    /* time-domain coupling (coef[] is actually data[]!) */    scale = *cc_gain;    for (k=0; k<LN2; k++)       coef[k] += data[k] * scale;  }	}   voidcoupling ( Info *info, MC_Info *mip, Float **coef, Float **cc_coef, Float *cc_gain[CChans][Chans], int ch, int cc_dom, int cc_ind ){  int i, j, wn, cch, ind;      Ch_Info *cip = &mip->ch_info[ch];         j=cip->ncch;  for (i=0; i<j; i++) {    if (!cc_ind && (cc_dom != cip->cc_dom[i]) )      continue;    wn = cip->widx;    cch = cip->cch[i];    ind = cip->cc_ind[i];    if (debug['c'])      printf( "mixing cch %d onto ch %d, mode %d %d\n",            cch, ch, cc_dom, dep);    mix_cc(coef[ch], cc_coef[cch], cc_gain[cch][ch], ind);  }}#endif	/* (CChans > 0) */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -