⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 buffer.c

📁 elinux jffs初始版本 具体了解JFFS的文件系统!
💻 C
字号:
/* * linux/fs/fat/buffer.c * * */#include <linux/mm.h>#include <linux/malloc.h>#include <linux/string.h>#include <linux/fs.h>#include <linux/msdos_fs.h>#if 0#  define PRINTK(x) printk x#else#  define PRINTK(x)#endifstruct buffer_head *fat_bread (	struct super_block *sb,	int block){	struct buffer_head *ret = NULL;	PRINTK(("fat_bread: block=0x%x\n", block));	/* Note that the blocksize is 512 or 1024, but the first read	   is always of size 1024. Doing readahead may be counterproductive	   or just plain wrong. */	if (sb->s_blocksize == 512) {		ret = bread (sb->s_dev,block,512);	} else {		struct buffer_head *real = bread (sb->s_dev,block>>1,1024);		if (real != NULL){			ret = (struct buffer_head *)			  kmalloc (sizeof(struct buffer_head), GFP_KERNEL);			if (ret != NULL) {				/* #Specification: msdos / strategy / special device / dummy blocks					Many special device (Scsi optical disk for one) use					larger hardware sector size. This allows for higher					capacity.					Most of the time, the MsDOS file system that sit					on this device is totally unaligned. It use logically					512 bytes sector size, with logical sector starting					in the middle of a hardware block. The bad news is					that a hardware sector may hold data own by two					different files. This means that the hardware sector					must be read, patch and written almost all the time.					Needless to say that it kills write performance					on all OS.					Internally the linux msdos fs is using 512 bytes					logical sector. When accessing such a device, we					allocate dummy buffer cache blocks, that we stuff					with the information of a real one (1k large).					This strategy is used to hide this difference to					the core of the msdos fs. The slowdown is not					hidden though!				*/				/*					The memset is there only to catch errors. The msdos					fs is only using b_data				*/				memset (ret,0,sizeof(*ret));				ret->b_data = real->b_data;				if (block & 1) ret->b_data += 512;				ret->b_next = real;			}else{				brelse (real);			}		}	}	return ret;}struct buffer_head *fat_getblk (	struct super_block *sb,	int block){	struct buffer_head *ret = NULL;	PRINTK(("fat_getblk: block=0x%x\n", block));	if (sb->s_blocksize == 512){		ret = getblk (sb->s_dev,block,512);	}else{		/* #Specification: msdos / special device / writing			A write is always preceded by a read of the complete block			(large hardware sector size). This defeat write performance.			There is a possibility to optimize this when writing large			chunk by making sure we are filling large block. Volunteer ?		*/		ret = fat_bread (sb,block);	}	return ret;}void fat_brelse (	struct super_block *sb,	struct buffer_head *bh){	if (bh != NULL){		if (sb->s_blocksize == 512){			brelse (bh);		}else{			brelse (bh->b_next);			/* We can free the dummy because a new one is allocated at				each fat_getblk() and fat_bread().			*/			kfree (bh);		}	}}	void fat_mark_buffer_dirty (	struct super_block *sb,	struct buffer_head *bh,	int dirty_val){	if (sb->s_blocksize != 512){		bh = bh->b_next;	}	mark_buffer_dirty (bh,dirty_val);}void fat_set_uptodate (	struct super_block *sb,	struct buffer_head *bh,	int val){	if (sb->s_blocksize != 512){		bh = bh->b_next;	}	mark_buffer_uptodate(bh, val);}int fat_is_uptodate (	struct super_block *sb,	struct buffer_head *bh){	if (sb->s_blocksize != 512){		bh = bh->b_next;	}	return buffer_uptodate(bh);}void fat_ll_rw_block (	struct super_block *sb,	int opr,	int nbreq,	struct buffer_head *bh[32]){	if (sb->s_blocksize == 512){		ll_rw_block(opr,nbreq,bh);	}else{		struct buffer_head *tmp[32];		int i;		for (i=0; i<nbreq; i++){			tmp[i] = bh[i]->b_next;		}		ll_rw_block(opr,nbreq,tmp);	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -