📄 s_runsis2.cc
字号:
// File: s_runsis2.cc// Author: Suvrit Sra// Date: 23 Nov 03/************************************************************************* THE ORIGINAL SVDPAKC COPYRIGHT (c) Copyright 1993 University of Tennessee All Rights Reserved *************************************************************************/#include <cstdio>#include <cstdlib>#include <cmath>#include <cerrno>#include <cstring>#include <unistd.h>#include <fcntl.h>#include "s_runsis2.h"using namespace ssvd;s_runsis2::s_runsis2(char* optionsFile){ options = new OptionsStruct(); /* open files for input/output */ if (!(options->in1 = fopen(optionsFile, "r"))) { fprintf(stderr, "could not open file %s for reading\n", optionsFile); exit (-1); } fscanf(options->in1, "%s %s %s", options->out1, options->out2, options->out3); if (!(options->of1 = fopen(options->out1, "w"))) { fprintf(stderr, "could not open output file %s \n", options->out1); exit (-1); } options->of1 = fopen(options->out1, "w"); if (!options->of1) { fprintf(stderr, "Error opening %s. Quitting!\n", options->out1); exit(-1); } options->of2 = fopen(options->out2, "w"); if (!options->of2) { fprintf(stderr, "Error opening %s. Quitting!\n", options->out2); exit(-1); } int asc; fscanf(options->in1,"%s%ld%ld%ld%lf%s%d", options->name, &options->maxsubsp, &options->numextra, &options->km, &options->eps, options->vtf, &asc); if (!(strcmp(options->vtf, "TRUE"))) { options->vectors = true; if (asc > 0) { options->ascii = true; options->vecs = fopen(options->out3, "w"); if (!options->vecs) { fprintf(stderr, "cannot open output file %s \n", options->out3); exit (-1); } } else { if ((options->fpo2 = open(options->out3, O_CREAT | O_RDWR)) == -1) { fprintf(stderr, "cannot open output file %s \n", options->out3); exit (-1); } } } else options->vectors = false;}s_runsis2::s_runsis2(OptionsStruct* o){ if (!o) setupDefault(); else options = o; /* Now open the files etc. specified by the options*/ if (!(options->of1 = fopen(options->out1, "w"))) { fprintf(stderr, "could not open output file %s \n", options->out1); exit (-1); } options->of2 = fopen(options->out2, "w"); if (!options->of2) { fprintf(stderr, "Error opening %s. Quitting!\n", options->out2); exit(-1); } if (options->vectors) { if ((options->fpo2 = open(options->out3, O_CREAT | O_RDWR)) == -1) { fprintf(stderr, "cannot open output file %s \n", options->out3); exit (-1); } } if (init(options->prefix, options->txx) < 0) { fprintf(stderr, "Could not build sparse matrix %s\n", options->prefix); exit (-1); }}void s_runsis2::setupDefault(){ options = new OptionsStruct(); /* Set up certain default values of parameters. Might not generally work though */ }int s_runsis2::runIt(){ float t0, exetime; long k, i, ii, n , size1, size2; double *x[NSIG], *cx, *f, *d, *u , *tptr ; long p, em2, imem; double dsum, tmp1, tmp2, tmp3, tmp4, xnorm; /*write header of output file*/ fprintf(options->of2,"\n\n ----------------------------------------\n"); fprintf(options->of2," INTERMEDIATE OUTPUT PARMS:\n\n"); fprintf(options->of2," M:=CURRENT DEGREE OF CHEBYSHEV POLYNOMIAL\n"); fprintf(options->of2," S:=NEXT ITERATION STEP\n"); fprintf(options->of2," G:=NUMBER OF ACCEPTED EIGENVALUES OF B\n"); fprintf(options->of2," H:=NUMBER OF ACCEPTED EIGEN VECTORS OF B\n"); fprintf(options->of2," F:=VECTOR OF ERROR FOR EIGENPAIRS OF B\n"); fprintf(options->of2," ---------------------------------------------\n"); fprintf(options->of2," M S G H F \n"); fprintf(options->of2," ---------------------------------------------"); n = ncol; if (m_nz > NZMAX) { fprintf(stderr,"sorry, your matrix is too big\n"); return -1; } p= options->maxsubsp + options->numextra; em2 = options->maxsubsp; /******************************************************************* * allocate memory * * pointr - column start array of harwell-boeing sparse matrix * * format (ncol+1) * * rowind - row indices array of harwell-boeing format (nnzero) * * value - nonzero values array of harwell-boeing sparse matrix * * format (nnzero) * * x - 2 dimensional array of iteration vectors (NSIG*n) * * d - array of eigenvalues of B (p) * (squares of the singular values of A) * * f - temporary storage array (p) * * cx - temporary storage array (control quantities) (n) * * u - work array (nrow) * *******************************************************************/ size1 = sizeof(double) * (p* 2 + n + nrow + NSIG * n); //size2 = sizeof(long) * (ncol + nnzero + 1); //if (!(pointr = (long *) malloc(size2)) || if ( !(tptr = (double *) malloc(size1))) { perror("MALLOC FAILED in MAIN()"); return -2; } imem=size1; // - (nnzero * sizeof(double)); for (ii=0;ii<NSIG; ii++){ x[ii]=tptr; tptr+=n; } d=tptr; tptr+=p; f=tptr; tptr+=p; cx=tptr; tptr+=n; u =tptr; sing = d; exetime = timer(); /* call ritzit */ ritzit(options->of2,n,p,options->km,options->eps, options->maxsubsp, x, d, f, cx, u, &imem); exetime = timer() - exetime; write_data(n,options->km,em2,options->maxsubsp,p,imem, options->vectors,options->eps,"NONE",options->name); t0=timer(); if (options->vectors) { write_header(options->fpo2, options->vecs, options->ascii, nrow, ncol, em2, "sis2"); } for (j=0;j<em2;j++) { mopb(n, &x[j][0], cx); tmp1=ddot(n,&(x[j][0]), 1, cx, 1); daxpy(n, -tmp1, &(x[j][0]), 1, cx, 1); tmp1=sqrt(tmp1); xnorm=sqrt(ddot(n, cx, 1, cx, 1)); /* multiply by matrix A to get (scaled) left S-vector */ opa(n, &x[j][0], u); tmp2=ONE/tmp1; dscal(nrow, tmp2, u, 1); xnorm=xnorm*tmp2; f[j]=xnorm; d[j]=tmp1; if (options->vectors) { if (options->ascii) { for (int zz = 0; zz < nrow; zz++) fprintf(options->vecs, "%f ", u[zz]); fprintf(options->vecs, "\n"); for (int zz = 0; zz < n; zz++) fprintf(options->vecs, "%f ", x[j][zz]); fprintf(options->vecs, "\n"); } else { write(options->fpo2, (char *)u, nrow * sizeof(double)); write(options->fpo2, (char *)&x[j][0],n * sizeof(double)); } } } exetime=exetime + timer() -t0; fprintf(stdout,"\n ...... SISVD EXECUTION TIME= %10.2e\n",exetime); fprintf(stdout," ......\n ......"); fprintf(stdout," MXV = %12.ld\n ...... COMPUTED SINGULAR VALUES (RESIDUAL NORMS)\n ......", mxvcount); for (ii=0;ii<em2;ii++) fprintf(stdout,"\n ...... %3.ld %22.14e (%11.2e)", ii+1, d[ii], f[ii]); fprintf(stdout,"\n"); fprintf(options->of1, "%d\n", em2); for (ii=0; ii < em2; ii++) fprintf(options->of1, "%.14f\n", d[ii]); if (options->in1) fclose(options->in1); if (options->vectors) close(options->fpo2); fclose(options->of2); fclose(options->of1); return 0;}/*********************************************************************/void s_runsis2::write_data(long n, long km, long em2, long em, long p, long imem, long vectors, double eps, char *title, char *name){ char svectors;if (vectors) svectors='T'; else svectors='F'; fprintf( stdout,"\n ...\n ... SOLVE THE [A^TA] EIGENPROBLEM\n"); fprintf(stdout," ... NO. OF EQUATIONS = %10.ld\n",n); fprintf( stdout," ... MAX. NO. OF ITERATIONS = %10.ld\n ",km); fprintf(stdout,"... NO. OF DESIRED EIGENPAIRS = %10.ld\n ",em2); fprintf(stdout,"... NO. OF APPROX. EIGENPAIRS = %10.ld\n ",em); fprintf(stdout,"... INITIAL SUBSPACE DIM. = %10.ld\n ",p); fprintf(stdout,"... FINAL SUBSPACE DIM. = %10.ld\n ",p-em); fprintf(stdout,"... MEM REQUIRED (BYTES) = %10.ld\n",imem); fprintf(stdout," ... WANT S-VECTORS? [T/F] = %10.c\n",svectors); fprintf(stdout," ... TOLERANCE = %10.2e\n ",eps); fprintf(stdout,"... NO. OF ITERATIONS TAKEN = %10.ld\n ", ksteps); fprintf(stdout,"... MAX. DEG. CHEBYSHEV POLY. = %10.ld\n ...\n ", maxm); fprintf(stdout,"%s\n %s\n ... NO. OF TERMS (ROWS) = %10.d\n",title, name, nrow); fprintf(stdout," ... NO. OF DOCUMENTS (COLS) = %10.ld\n ",ncol); fprintf(stdout,"... ORDER OF MATRIX B = %10.ld\n ...\n", n); fflush(stdout);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -