⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_runsis2.cc

📁 矩阵奇异分解(svd)最新c++版本
💻 CC
字号:
// File: s_runsis2.cc// Author: Suvrit Sra// Date: 23 Nov 03/************************************************************************* THE ORIGINAL SVDPAKC COPYRIGHT                           (c) Copyright 1993                        University of Tennessee                          All Rights Reserved                           *************************************************************************/#include <cstdio>#include <cstdlib>#include <cmath>#include <cerrno>#include <cstring>#include <unistd.h>#include <fcntl.h>#include "s_runsis2.h"using namespace ssvd;s_runsis2::s_runsis2(char* optionsFile){  options = new OptionsStruct();  /* open files for input/output */  if (!(options->in1 = fopen(optionsFile, "r"))) {     fprintf(stderr, "could not open file %s for reading\n", optionsFile);    exit (-1);  }      fscanf(options->in1, "%s %s %s", options->out1, options->out2, options->out3);  if (!(options->of1 = fopen(options->out1, "w"))) {     fprintf(stderr, "could not open output file %s \n", options->out1);    exit (-1);  }  options->of1 = fopen(options->out1, "w");  if (!options->of1) {    fprintf(stderr, "Error opening %s. Quitting!\n", options->out1);    exit(-1);  }  options->of2 = fopen(options->out2, "w");  if (!options->of2) {    fprintf(stderr, "Error opening %s. Quitting!\n", options->out2);    exit(-1);  }  int asc;  fscanf(options->in1,"%s%ld%ld%ld%lf%s%d", options->name, &options->maxsubsp,	 &options->numextra, &options->km, &options->eps, options->vtf, &asc);  if (!(strcmp(options->vtf, "TRUE"))) {    options->vectors = true;    if (asc > 0) {      options->ascii = true;      options->vecs = fopen(options->out3, "w");      if (!options->vecs) {	fprintf(stderr, "cannot open output file %s \n", options->out3);	exit (-1);      }    } else {      if ((options->fpo2 = open(options->out3, O_CREAT | O_RDWR)) == -1) {	fprintf(stderr, "cannot open output file %s \n", options->out3);	exit (-1);      }    }  }  else    options->vectors = false;}s_runsis2::s_runsis2(OptionsStruct* o){   if (!o)    setupDefault();  else     options = o;  /* Now open the files etc. specified by the options*/  if (!(options->of1 = fopen(options->out1, "w"))) {     fprintf(stderr, "could not open output file %s \n", options->out1);    exit (-1);  }  options->of2 = fopen(options->out2, "w");  if (!options->of2) {    fprintf(stderr, "Error opening %s. Quitting!\n", options->out2);    exit(-1);  }  if (options->vectors) {    if ((options->fpo2 = open(options->out3, O_CREAT | O_RDWR)) == -1) {      fprintf(stderr, "cannot open output file %s \n", options->out3);      exit (-1);    }  }  if (init(options->prefix, options->txx) <  0) {    fprintf(stderr, "Could not build sparse matrix %s\n", options->prefix);    exit (-1);  }}void s_runsis2::setupDefault(){  options = new OptionsStruct();  /* Set up certain default values of parameters. Might not generally work     though */  }int s_runsis2::runIt(){  float t0, exetime;  long k, i, ii, n , size1, size2;  double *x[NSIG], *cx, *f, *d, *u  , *tptr ;  long p, em2, imem;  double dsum, tmp1, tmp2, tmp3, tmp4, xnorm;   /*write header of output file*/      fprintf(options->of2,"\n\n ----------------------------------------\n");   fprintf(options->of2," INTERMEDIATE OUTPUT PARMS:\n\n");   fprintf(options->of2," M:=CURRENT DEGREE OF CHEBYSHEV POLYNOMIAL\n");   fprintf(options->of2," S:=NEXT ITERATION STEP\n");   fprintf(options->of2," G:=NUMBER OF ACCEPTED EIGENVALUES OF B\n");   fprintf(options->of2," H:=NUMBER OF ACCEPTED EIGEN VECTORS OF B\n");   fprintf(options->of2," F:=VECTOR OF ERROR FOR EIGENPAIRS OF B\n");   fprintf(options->of2," ---------------------------------------------\n");   fprintf(options->of2," M         S       G       H         F     \n");   fprintf(options->of2," ---------------------------------------------");    n = ncol;      if (m_nz > NZMAX) {      fprintf(stderr,"sorry, your matrix is too big\n");      return -1;    }        p=  options->maxsubsp + options->numextra;    em2 = options->maxsubsp;    /*******************************************************************     * allocate memory						       *     * pointr - column start array of harwell-boeing sparse matrix     *     *          format                                       (ncol+1)  *     * rowind - row indices array of harwell-boeing format   (nnzero)  *     * value  - nonzero values array of harwell-boeing sparse matrix   *     *          format                                       (nnzero)  *     * x      - 2 dimensional array of  iteration vectors    (NSIG*n)  *     * d      - array of eigenvalues of B                    (p)       *                         (squares of the singular values of A)         *     * f      - temporary storage array                      (p)       *     * cx     - temporary storage array (control quantities) (n)       *     * u      - work array                                   (nrow)    *     *******************************************************************/    size1 = sizeof(double) * (p* 2 + n  + nrow + NSIG * n);    //size2 = sizeof(long) * (ncol + nnzero + 1);    //if (!(pointr = (long *)   malloc(size2))   ||    if ( !(tptr  = (double *) malloc(size1))) {      perror("MALLOC FAILED in MAIN()");      return -2;    }        imem=size1; // - (nnzero * sizeof(double));    for (ii=0;ii<NSIG; ii++){          x[ii]=tptr;	  tptr+=n;    }    d=tptr;    tptr+=p;    f=tptr;    tptr+=p;    cx=tptr;    tptr+=n;    u  =tptr;        sing = d;    exetime = timer();        /*  call ritzit */    ritzit(options->of2,n,p,options->km,options->eps,		   options->maxsubsp, x, d, f, cx, u, &imem);    exetime = timer() - exetime;    write_data(n,options->km,em2,options->maxsubsp,p,imem,			   options->vectors,options->eps,"NONE",options->name);    t0=timer();        if (options->vectors) {      write_header(options->fpo2, options->vecs, options->ascii, nrow, ncol, em2, "sis2");    }    for (j=0;j<em2;j++) {      mopb(n, &x[j][0], cx);      tmp1=ddot(n,&(x[j][0]), 1, cx, 1);      daxpy(n, -tmp1, &(x[j][0]), 1, cx, 1);      tmp1=sqrt(tmp1);      xnorm=sqrt(ddot(n, cx, 1, cx, 1));      /* multiply by matrix A to get (scaled) left S-vector */      opa(n, &x[j][0], u);      tmp2=ONE/tmp1;      dscal(nrow, tmp2, u, 1);      xnorm=xnorm*tmp2;      f[j]=xnorm;      d[j]=tmp1;      if (options->vectors) {	if (options->ascii) {	  for (int zz = 0; zz < nrow; zz++)	    fprintf(options->vecs, "%f ", u[zz]);	  fprintf(options->vecs, "\n");	  for (int zz = 0; zz < n; zz++)	    fprintf(options->vecs, "%f ", x[j][zz]);	  fprintf(options->vecs, "\n");	} else {	  write(options->fpo2, (char *)u, nrow * sizeof(double));	  write(options->fpo2, (char *)&x[j][0],n * sizeof(double));	}      }    }     exetime=exetime + timer() -t0;        fprintf(stdout,"\n ...... SISVD EXECUTION TIME= %10.2e\n",exetime);    fprintf(stdout," ......\n ......");    fprintf(stdout," MXV   = %12.ld\n ......    COMPUTED SINGULAR VALUES  (RESIDUAL NORMS)\n ......", mxvcount);        for (ii=0;ii<em2;ii++)      fprintf(stdout,"\n ...... %3.ld   %22.14e  (%11.2e)",	      ii+1,     d[ii],    f[ii]);            fprintf(stdout,"\n");        fprintf(options->of1, "%d\n", em2);    for (ii=0; ii < em2; ii++)      fprintf(options->of1, "%.14f\n", d[ii]);    if (options->in1)      fclose(options->in1);    if (options->vectors) close(options->fpo2);    fclose(options->of2);    fclose(options->of1);    return 0;}/*********************************************************************/void s_runsis2::write_data(long n, long km, long em2, long em, long p,  long imem, long vectors, double eps, char *title, char *name){ char svectors;if (vectors) svectors='T'; else svectors='F';  fprintf( stdout,"\n ...\n ... SOLVE THE [A^TA] EIGENPROBLEM\n");  fprintf(stdout," ... NO. OF EQUATIONS           = %10.ld\n",n);  fprintf( stdout," ... MAX. NO. OF ITERATIONS     = %10.ld\n ",km);  fprintf(stdout,"... NO. OF DESIRED EIGENPAIRS  = %10.ld\n ",em2);  fprintf(stdout,"... NO. OF APPROX. EIGENPAIRS  = %10.ld\n ",em);  fprintf(stdout,"... INITIAL SUBSPACE DIM.      = %10.ld\n ",p);  fprintf(stdout,"... FINAL   SUBSPACE DIM.      = %10.ld\n ",p-em);  fprintf(stdout,"... MEM REQUIRED (BYTES)       = %10.ld\n",imem);  fprintf(stdout," ... WANT S-VECTORS? [T/F]      = %10.c\n",svectors);  fprintf(stdout," ... TOLERANCE                  = %10.2e\n ",eps);  fprintf(stdout,"... NO. OF ITERATIONS TAKEN    = %10.ld\n ", ksteps);  fprintf(stdout,"... MAX. DEG. CHEBYSHEV POLY.  = %10.ld\n ...\n ", maxm);  fprintf(stdout,"%s\n %s\n ... NO. OF TERMS     (ROWS)    = %10.d\n",title, name, nrow);  fprintf(stdout," ... NO. OF DOCUMENTS (COLS)    = %10.ld\n ",ncol);  fprintf(stdout,"... ORDER OF MATRIX B          = %10.ld\n ...\n", n);  fflush(stdout);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -