📄 lfcm.c
字号:
/* lfcm.c A literal FCM implementation. $Id: lfcm.c,v 1.3 2002/07/12 20:48:48 eschrich Exp $ Steven Eschrich Copyright (C) 2002 University of South Florida This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA*/#include <stdio.h>#include <stdlib.h>#include <sys/types.h>#include <math.h>#include <sys/times.h>#include <sys/resource.h>#include <limits.h>#include <unistd.h>#include <time.h>#include <string.h>#include "utils.h"#define U(i,j) U[j][i]/* Variables are defined statically here. These are reasonable defaults, but can be changed via the parameter to lfcmCluster() */double epsilon=0.25;double m=2.0;int C=2;int S=2;int N=2;double **V;double **U;double **X;int number_of_iterations;long seed;int *max_value;/* Public functions */int lfcm();/* Private functions */int update_centroids();double update_umatrix();/* Utilities */int init();int is_example_centroid();double distance();int output_centroids();int output_umatrix();int output_members();/* External functions */int load_test_data();int load_atr_data();int load_mri_data();/* For testing purposes, we hard-code the desired number of clusters */#define ATR_NUMBER_OF_CLUSTERS 5#define MRI_NUMBER_OF_CLUSTERS 10#define TEST_NUMBER_OF_CLUSTERS 2#define TEST 1#define ATR 2#define MRI 3/* Global variables */int dataset_type=MRI;int write_centroids=0;int write_umatrix=0;int write_members=0;/* Variables that must be defined for called functions */int vals[][3]={{256,256,256},{0,0,0},{256,256,256},{4096,4096,4096}};/* Function prototypes */double *timing_of(); /* Calculate time in seconds */int main(int argc, char **argv){ struct rusage start_usage, end_usage; int ch; double *perf_times; char *filename; epsilon=0.225; m=2.0; seed=2000; max_value=vals[dataset_type]; while ( (ch=getopt(argc, argv,"hw:d:s:")) != EOF ) { switch (ch) { case 'h': fprintf(stderr,"Usage\n" \ "-d [a|t|m|s] Use dataset atr, mri, test, seawifs\n"\ "-w write cluster centers and memberships out\n"\ "-s seed Use seed as the random seed\n"); exit(1); case 'w': if ( !strcmp(optarg,"umatrix") ) write_umatrix=1; if ( !strcmp(optarg,"centroids") ) write_centroids=1; if ( !strcmp(optarg,"members") ) write_members=1; if ( !strcmp(optarg,"all")) write_umatrix=write_centroids=write_members=1; break; case 'd': if ( *optarg == 'a' ) dataset_type=ATR; if ( *optarg == 'm' ) dataset_type=MRI; if ( *optarg == 't' ) dataset_type=TEST; max_value=vals[dataset_type]; break; case 's': seed=atol(optarg); break; default: } } /* Print out main parameters for this run */ fprintf(stdout,"FCM Parameters\n clusterMethod=literal fcm\n"); filename=argv[optind]; fprintf(stdout," file=%s\n\n",filename); /* Load the dataset, using one of a particular group of datasets. */ switch (dataset_type) { case TEST: load_test_data(&X, &S, &N); C=TEST_NUMBER_OF_CLUSTERS; break; case ATR: load_atr_data(argv[optind],&X, &S, &N); C=ATR_NUMBER_OF_CLUSTERS; break; case MRI: load_mri_data(argv[optind], &X, &S, &N); C=MRI_NUMBER_OF_CLUSTERS; break; } fprintf(stdout, "Beginning to cluster...\n"); /* Time the brfcm algorithm */ getrusage(RUSAGE_SELF, &start_usage); lfcm(); getrusage(RUSAGE_SELF, &end_usage); /* Output whatever clustering results we need */ if ( write_centroids ) output_centroids(filename); if ( write_umatrix ) output_umatrix(filename); if ( write_members ) output_members(filename); /* Output timing numbers */ perf_times=timing_of(start_usage, end_usage); printf("Timing: %f user, %f system, %f total.\n", perf_times[0], perf_times[1], perf_times[0] + perf_times[1]); printf("Clustering required %d iterations.\n", number_of_iterations); return 0;}/* Main entry point into code. Cluster the dataset, given the details in the parameter block. */int lfcm(){ double sqrerror = 2 * epsilon; /* Initialize code */ init(); /* Run the updates iteratively */ while (sqrerror > epsilon ) { number_of_iterations++; update_centroids(); sqrerror=update_umatrix(); } /* We go ahead and update the centroids - presumably this will not change much, since the overall square error in U is small */ update_centroids(); return 0;}/* update_centroids() Given a membership matrix U, recalculate the cluster centroids as the "weighted" mean of each contributing example from the dataset. Each example contributes by an amount proportional to the membership value.*/int update_centroids(){ int i,k,x; double numerator[S], denominator[S]; /* For each cluster */ for (i=0; i < C; i++) { /* Zero out numerator and denominator options */ for (x=0; x < S; x++) { numerator[x]=0; denominator[x]=0; } /* Calculate numerator */ for (k=0; k < N; k++) { for (x=0; x < S; x++) numerator[x] += pow(U(i,k), m) * X[k][x]; } /* Calculate denominator */ for (k=0; k < N; k++) { for (x=0; x < S; x++) denominator[x] += pow(U(i,k), m); } /* Calculate V */ for (x=0; x < S; x++) { V[i][x]= numerator[x] / denominator[x]; } } /* endfor: C clusters */ return 0;}double update_umatrix(){ int i,j,k; int example_is_centroid; double summation, D_ki, D_kj; double square_difference=0; double newU; /* For each example in the dataset */ for ( k=0; k < N; k++) { /* Special case: If Example is equal to a Cluster Centroid, then U=1.0 for that cluster and 0 for all others */ if ( (example_is_centroid=is_example_centroid(k)) != -1 ) { for (i=0; i < C; i++) { if ( i == example_is_centroid ) U(i,k)=1.0; else U(i,k)=0.0; } continue; } /* For each class */ for (i=0; i < C; i++) { summation=0; /* Calculate summation */ for (j=0; j < C; j++) { D_ki=distance(X[k], V[i]); D_kj=distance(X[k], V[j]); summation += pow( D_ki / D_kj , (2.0/ (m-1))); } /* Weight is 1/sum */ newU=1.0/(double)summation; /* Add to the squareDifference */ square_difference += pow(U(i,k) - newU, 2); U(i,k)=newU; } } /* endfor n */ return square_difference;}/*=================================================== Utilities init() checkIfExampleIsCentroid() distance() ===================================================*//* Allocate storage for U and V dynamically. Also, copy over the variables that may have been externally set into short names, which are private and easier to access.*/int init(){ int i,j; /* Allocate necessary storage */ V=(double **)CALLOC(C,sizeof(double *)); for (i=0; i < C; i++) V[i]=(double *)CALLOC(S, sizeof(double)); U=(double **)CALLOC(N, sizeof(double *)); for (i=0; i < N; i++) U[i]=(double *)CALLOC(C,sizeof(double)); /* Place random values in V, then update U matrix based on it */ srand48(seed); for (i=0; i < C; i++) { for (j=0; j < S; j++) { V[i][j]=drand48() * max_value[j]; } } /* Once values are populated in V, update the U Matrix for sane values */ update_umatrix(); return 0;} /* If X[k] == V[i] for some i, then return that i. Otherwise, return -1 */int is_example_centroid(int k){ int i,x; for (i=0; i < C; i++) { for (x=0; x < S; x++) { if ( X[k][x] != V[i][x] ) break; } if ( x == S ) /* X==V */ return i; } return -1;}double distance(double *v1, double *v2){ int x; double sum=0; for (x=0; x < S; x++) sum += (v1[x] - v2[x]) * (v1[x] - v2[x]); return sqrt(sum);}/*===================================================== Public output utilities output_centroids() output_umatrix() output_members() =====================================================*/int output_centroids(char *filestem){ FILE *fp; char buf[1024]; int i,j; sprintf(buf,"%s.centroids", filestem); fp=FOPEN(buf,"w"); for (i=0;i < C ;i++) { for (j=0; j < S; j++) fprintf(fp, "%f\t",V[i][j]); fprintf(fp,"\n"); } fclose(fp); return 0;}int output_umatrix(char *filestem){ FILE *fp; char buf[1024]; int i,j; sprintf(buf,"%s.umatrix", filestem); fp=FOPEN(buf,"w"); for (i=0; i < N; i++) { for (j=0; j < C; j++) fprintf(fp,"%f\t", U[i][j]); fprintf(fp,"\n"); } fclose(fp); return 0;}int output_members(char *filestem){ FILE *fp; char buf[1024]; int i,j,max; sprintf(buf,"%s.members", filestem); fp=FOPEN(buf,"w"); for (i=0; i < N; i++) { for (max=j=0; j < C; j++) if ( U[i][j] > U[i][max] ) max=j; fprintf(fp,"%d\n",max); } fclose(fp); return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -