⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 boxjenkins.dat

📁 一个用MATLAB编写的优化控制工具箱
💻 DAT
📖 第 1 页 / 共 3 页
字号:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% This file obtained from the web site (on 3/29/99)% % http://neural.cs.nthu.edu.tw/jang/benchmark/% % that is the % IEEE Neural Networks Council Standards Committee% Working Group on Data Modeling Benchmarks%% Comment from that web site:%% The goal of the Working Group on Data Modeling Benchmarks (under IEEE Neural Networks Council % Standards Committee) is to provide an easy access to references to modeling % approaches and related datasets via WWW. Hopefully this can facilitate further %  research and comparisons on computational data modeling approaches, including artificial % neural networks, fuzzy inference systems, CART, MARS, and all nonlinear regression % and optimization techniques. %% This page is constantly under construction, but the lists of datasets/publications % are by no means complete. If you have new datasets/papers and would like to% put them here, please send me an email (jang@cs.nthu.edu.tw) to let me know where % to link them. Any feedbacks and suggestions are also highly welcome. %% J.-S. Roger Jang% CS Dept., Tsing Hua Univ., Taiwan %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The file obtained is below (without the lines commented out)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%----------------------------------------%"Box and Jenkins furnace data from:% G.E.P. Box and G.M. Jenkins% Time Series Analysis, Forecasting and Control% San Francisco, Holden Day, 1970,  pp. 532-533.%% There are originally 296 data points {y(t),u(t)}, from t=1 to t=296.% y(t) is the output CO2 concentration and u(t) is the input gas flow% rate.  Here we are trying to predict y(t) based on {y(t-1), y(t-2),% y(t-3), y(t-4), u(t-1), u(t-2), u(t-3), u(t-4), u(t-5), u(t-6)}.  This% reduces the number of effective data points to 290.% Most methods find that the best set of input variables for predicting% y(t) is {y(t-1),u(t-4)}.  Sugeno and Yasukawa has found that the best% set of input variables for predicting y(t) is {y(t-1), u(t-4), u(t-3)}.%% The first column below is the output variable y(t), the remaining% columns are the input variables {y(t-1), y(t-2),...u(t-6)}.%"%%output y(t);%input y(t-1) y(t-2) y(t-3) y(t-4) u(t-1) u(t-2) u(t-3) u(t-4) u(t-5) u(t-6) ;   5.27e+01   5.31e+01   5.34e+01   5.35e+01   5.35e+01   4.41e-01   3.73e-01   3.39e-01   1.78e-01   0.00e+00  -1.09e-01   5.24e+01   5.27e+01   5.31e+01   5.34e+01   5.35e+01   4.61e-01   4.41e-01   3.73e-01   3.39e-01   1.78e-01   0.00e+00   5.22e+01   5.24e+01   5.27e+01   5.31e+01   5.34e+01   3.48e-01   4.61e-01   4.41e-01   3.73e-01   3.39e-01   1.78e-01   5.20e+01   5.22e+01   5.24e+01   5.27e+01   5.31e+01   1.27e-01   3.48e-01   4.61e-01   4.41e-01   3.73e-01   3.39e-01   5.20e+01   5.20e+01   5.22e+01   5.24e+01   5.27e+01  -1.80e-01   1.27e-01   3.48e-01   4.61e-01   4.41e-01   3.73e-01   5.24e+01   5.20e+01   5.20e+01   5.22e+01   5.24e+01  -5.88e-01  -1.80e-01   1.27e-01   3.48e-01   4.61e-01   4.41e-01   5.30e+01   5.24e+01   5.20e+01   5.20e+01   5.22e+01  -1.055e+00  -5.88e-01  -1.80e-01   1.27e-01   3.48e-01   4.61e-01   5.40e+01   5.30e+01   5.24e+01   5.20e+01   5.20e+01  -1.421e+00  -1.055e+00  -5.88e-01  -1.80e-01   1.27e-01   3.48e-01   5.49e+01   5.40e+01   5.30e+01   5.24e+01   5.20e+01  -1.52e+00  -1.421e+00  -1.055e+00  -5.88e-01  -1.80e-01   1.27e-01   5.60e+01   5.49e+01   5.40e+01   5.30e+01   5.24e+01  -1.302e+00  -1.52e+00  -1.421e+00  -1.055e+00  -5.88e-01  -1.80e-01   5.68e+01   5.60e+01   5.49e+01   5.40e+01   5.30e+01  -8.14e-01  -1.302e+00  -1.52e+00  -1.421e+00  -1.055e+00  -5.88e-01   5.68e+01   5.68e+01   5.60e+01   5.49e+01   5.40e+01  -4.75e-01  -8.14e-01  -1.302e+00  -1.52e+00  -1.421e+00  -1.055e+00   5.64e+01   5.68e+01   5.68e+01   5.60e+01   5.49e+01  -1.93e-01  -4.75e-01  -8.14e-01  -1.302e+00  -1.52e+00  -1.421e+00   5.57e+01   5.64e+01   5.68e+01   5.68e+01   5.60e+01   8.80e-02  -1.93e-01  -4.75e-01  -8.14e-01  -1.302e+00  -1.52e+00   5.50e+01   5.57e+01   5.64e+01   5.68e+01   5.68e+01   4.35e-01   8.80e-02  -1.93e-01  -4.75e-01  -8.14e-01  -1.302e+00   5.43e+01   5.50e+01   5.57e+01   5.64e+01   5.68e+01   7.71e-01   4.35e-01   8.80e-02  -1.93e-01  -4.75e-01  -8.14e-01   5.32e+01   5.43e+01   5.50e+01   5.57e+01   5.64e+01   8.66e-01   7.71e-01   4.35e-01   8.80e-02  -1.93e-01  -4.75e-01   5.23e+01   5.32e+01   5.43e+01   5.50e+01   5.57e+01   8.75e-01   8.66e-01   7.71e-01   4.35e-01   8.80e-02  -1.93e-01   5.16e+01   5.23e+01   5.32e+01   5.43e+01   5.50e+01   8.91e-01   8.75e-01   8.66e-01   7.71e-01   4.35e-01   8.80e-02   5.12e+01   5.16e+01   5.23e+01   5.32e+01   5.43e+01   9.87e-01   8.91e-01   8.75e-01   8.66e-01   7.71e-01   4.35e-01   5.08e+01   5.12e+01   5.16e+01   5.23e+01   5.32e+01   1.263e+00   9.87e-01   8.91e-01   8.75e-01   8.66e-01   7.71e-01   5.05e+01   5.08e+01   5.12e+01   5.16e+01   5.23e+01   1.775e+00   1.263e+00   9.87e-01   8.91e-01   8.75e-01   8.66e-01   5.00e+01   5.05e+01   5.08e+01   5.12e+01   5.16e+01   1.976e+00   1.775e+00   1.263e+00   9.87e-01   8.91e-01   8.75e-01   4.92e+01   5.00e+01   5.05e+01   5.08e+01   5.12e+01   1.934e+00   1.976e+00   1.775e+00   1.263e+00   9.87e-01   8.91e-01   4.84e+01   4.92e+01   5.00e+01   5.05e+01   5.08e+01   1.866e+00   1.934e+00   1.976e+00   1.775e+00   1.263e+00   9.87e-01   4.79e+01   4.84e+01   4.92e+01   5.00e+01   5.05e+01   1.832e+00   1.866e+00   1.934e+00   1.976e+00   1.775e+00   1.263e+00   4.76e+01   4.79e+01   4.84e+01   4.92e+01   5.00e+01   1.767e+00   1.832e+00   1.866e+00   1.934e+00   1.976e+00   1.775e+00   4.75e+01   4.76e+01   4.79e+01   4.84e+01   4.92e+01   1.608e+00   1.767e+00   1.832e+00   1.866e+00   1.934e+00   1.976e+00   4.75e+01   4.75e+01   4.76e+01   4.79e+01   4.84e+01   1.265e+00   1.608e+00   1.767e+00   1.832e+00   1.866e+00   1.934e+00   4.76e+01   4.75e+01   4.75e+01   4.76e+01   4.79e+01   7.90e-01   1.265e+00   1.608e+00   1.767e+00   1.832e+00   1.866e+00   4.81e+01   4.76e+01   4.75e+01   4.75e+01   4.76e+01   3.60e-01   7.90e-01   1.265e+00   1.608e+00   1.767e+00   1.832e+00   4.90e+01   4.81e+01   4.76e+01   4.75e+01   4.75e+01   1.15e-01   3.60e-01   7.90e-01   1.265e+00   1.608e+00   1.767e+00   5.00e+01   4.90e+01   4.81e+01   4.76e+01   4.75e+01   8.80e-02   1.15e-01   3.60e-01   7.90e-01   1.265e+00   1.608e+00   5.11e+01   5.00e+01   4.90e+01   4.81e+01   4.76e+01   3.31e-01   8.80e-02   1.15e-01   3.60e-01   7.90e-01   1.265e+00   5.18e+01   5.11e+01   5.00e+01   4.90e+01   4.81e+01   6.45e-01   3.31e-01   8.80e-02   1.15e-01   3.60e-01   7.90e-01   5.19e+01   5.18e+01   5.11e+01   5.00e+01   4.90e+01   9.60e-01   6.45e-01   3.31e-01   8.80e-02   1.15e-01   3.60e-01   5.17e+01   5.19e+01   5.18e+01   5.11e+01   5.00e+01   1.409e+00   9.60e-01   6.45e-01   3.31e-01   8.80e-02   1.15e-01   5.12e+01   5.17e+01   5.19e+01   5.18e+01   5.11e+01   2.67e+00   1.409e+00   9.60e-01   6.45e-01   3.31e-01   8.80e-02   5.00e+01   5.12e+01   5.17e+01   5.19e+01   5.18e+01   2.834e+00   2.67e+00   1.409e+00   9.60e-01   6.45e-01   3.31e-01   4.83e+01   5.00e+01   5.12e+01   5.17e+01   5.19e+01   2.812e+00   2.834e+00   2.67e+00   1.409e+00   9.60e-01   6.45e-01   4.70e+01   4.83e+01   5.00e+01   5.12e+01   5.17e+01   2.483e+00   2.812e+00   2.834e+00   2.67e+00   1.409e+00   9.60e-01   4.58e+01   4.70e+01   4.83e+01   5.00e+01   5.12e+01   1.929e+00   2.483e+00   2.812e+00   2.834e+00   2.67e+00   1.409e+00   4.56e+01   4.58e+01   4.70e+01   4.83e+01   5.00e+01   1.485e+00   1.929e+00   2.483e+00   2.812e+00   2.834e+00   2.67e+00   4.60e+01   4.56e+01   4.58e+01   4.70e+01   4.83e+01   1.214e+00   1.485e+00   1.929e+00   2.483e+00   2.812e+00   2.834e+00   4.69e+01   4.60e+01   4.56e+01   4.58e+01   4.70e+01   1.239e+00   1.214e+00   1.485e+00   1.929e+00   2.483e+00   2.812e+00   4.78e+01   4.69e+01   4.60e+01   4.56e+01   4.58e+01   1.608e+00   1.239e+00   1.214e+00   1.485e+00   1.929e+00   2.483e+00   4.82e+01   4.78e+01   4.69e+01   4.60e+01   4.56e+01   1.905e+00   1.608e+00   1.239e+00   1.214e+00   1.485e+00   1.929e+00   4.83e+01   4.82e+01   4.78e+01   4.69e+01   4.60e+01   2.023e+00   1.905e+00   1.608e+00   1.239e+00   1.214e+00   1.485e+00   4.79e+01   4.83e+01   4.82e+01   4.78e+01   4.69e+01   1.815e+00   2.023e+00   1.905e+00   1.608e+00   1.239e+00   1.214e+00   4.72e+01   4.79e+01   4.83e+01   4.82e+01   4.78e+01   5.35e-01   1.815e+00   2.023e+00   1.905e+00   1.608e+00   1.239e+00   4.72e+01   4.72e+01   4.79e+01   4.83e+01   4.82e+01   1.22e-01   5.35e-01   1.815e+00   2.023e+00   1.905e+00   1.608e+00   4.81e+01   4.72e+01   4.72e+01   4.79e+01   4.83e+01   9.00e-03   1.22e-01   5.35e-01   1.815e+00   2.023e+00   1.905e+00   4.94e+01   4.81e+01   4.72e+01   4.72e+01   4.79e+01   1.64e-01   9.00e-03   1.22e-01   5.35e-01   1.815e+00   2.023e+00   5.06e+01   4.94e+01   4.81e+01   4.72e+01   4.72e+01   6.71e-01   1.64e-01   9.00e-03   1.22e-01   5.35e-01   1.815e+00   5.15e+01   5.06e+01   4.94e+01   4.81e+01   4.72e+01   1.019e+00   6.71e-01   1.64e-01   9.00e-03   1.22e-01   5.35e-01   5.16e+01   5.15e+01   5.06e+01   4.94e+01   4.81e+01   1.146e+00   1.019e+00   6.71e-01   1.64e-01   9.00e-03   1.22e-01   5.12e+01   5.16e+01   5.15e+01   5.06e+01   4.94e+01   1.155e+00   1.146e+00   1.019e+00   6.71e-01   1.64e-01   9.00e-03   5.05e+01   5.12e+01   5.16e+01   5.15e+01   5.06e+01   1.112e+00   1.155e+00   1.146e+00   1.019e+00   6.71e-01   1.64e-01   5.01e+01   5.05e+01   5.12e+01   5.16e+01   5.15e+01   1.121e+00   1.112e+00   1.155e+00   1.146e+00   1.019e+00   6.71e-01   4.98e+01   5.01e+01   5.05e+01   5.12e+01   5.16e+01   1.223e+00   1.121e+00   1.112e+00   1.155e+00   1.146e+00   1.019e+00   4.96e+01   4.98e+01   5.01e+01   5.05e+01   5.12e+01   1.257e+00   1.223e+00   1.121e+00   1.112e+00   1.155e+00   1.146e+00   4.94e+01   4.96e+01   4.98e+01   5.01e+01   5.05e+01   1.157e+00   1.257e+00   1.223e+00   1.121e+00   1.112e+00   1.155e+00   4.93e+01   4.94e+01   4.96e+01   4.98e+01   5.01e+01   9.13e-01   1.157e+00   1.257e+00   1.223e+00   1.121e+00   1.112e+00

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -