⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 x1008.html

📁 linux驱动开发
💻 HTML
📖 第 1 页 / 共 2 页
字号:
<HTML
><HEAD
><TITLE
>Blocking Processes</TITLE
><META
NAME="GENERATOR"
CONTENT="Microsoft FrontPage 4.0"><LINK
REL="HOME"
TITLE="The Linux Kernel Module Programming Guide"
HREF="index.html"><LINK
REL="UP"
TITLE="Blocking Processes"
HREF="c1006.html"><LINK
REL="PREVIOUS"
TITLE="Blocking Processes"
HREF="c1006.html"><LINK
REL="NEXT"
TITLE="Replacing Printks"
HREF="c1109.html"></HEAD
><BODY
CLASS="SECT1"
BGCOLOR="#FFFFFF"
TEXT="#000000"
LINK="#0000FF"
VLINK="#840084"
ALINK="#0000FF"
><DIV
CLASS="NAVHEADER"
><TABLE
SUMMARY="Header navigation table"
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TH
COLSPAN="3"
ALIGN="center"
>The Linux KerneLinux内核驱动模块编程指南 (内核版本2.2, 2.4)</TH 
></TR 
><TR 
><TD 
WIDTH="10%" 
ALIGN="left" 
VALIGN="bottom" 
><A 
HREF="c1006.html" 
ACCESSKEY="P" 
>返回</A
></TD
><TD
WIDTH="80%"
ALIGN="center"
VALIGN="bottom"
>第九章.阻塞进程</TD
><TD
WIDTH="10%"
ALIGN="right"
VALIGN="bottom"
><A
HREF="c1109.html"
ACCESSKEY="N"
>继续</A
></TD
></TR
></TABLE
><HR
ALIGN="LEFT"
WIDTH="100%"></DIV
><DIV
CLASS="SECT1"
><H1
CLASS="SECT1"
><A
NAME="AEN1008"
></A
>9.1. 阻塞进程</H1
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="AEN1015"
></A
>9.1.1. 阻塞进程</H2
><P
>当别人让你做一件你不能马上去做的事时,你会如何反映?如果你是人类的话,而且对方也是人类的话,你只会说:“现在不行,我忙着在。闪开!”但是如果你是一个内核模块而且你被一个进程以同样的问题困扰,你会有另外一个选择。你可以让该进程休眠直到你可以为它服务时。毕竟,这样的情况在内核中时时刻刻都在发生(这就是系统让多进程在单CPU上同时运行的方法)。</P
><P
>这个内核模块就是一个这样的例子。文件(名叫 <TT 
CLASS="FILENAME" 
>/proc/sleep</TT 
> <TT 
CLASS="FILENAME" 
> </TT
>)只可以在同一时刻被一个进程打开。如果该文件已经被打开,内核模块将调用函数 
			<TT 
CLASS="FUNCTION" 
>module_interruptible_sleep_on</TT 
><A 
NAME="AEN1048" 
HREF="#FTN.AEN1048" 
><SPAN 
CLASS="footnote" 
>[1]</SPAN 
></A 
><SPAN 
CLASS="footnote" 
>。该函数修改task的状态(task是一个内核中的结构体数据结构,其中保存着对应进程的信息和该进程正在调用的系统调用,如果有的话)为</SPAN
><TT
CLASS="PARAMETER"
><I
>TASK_INTERRUPTIBLE</I
></TT
>,意味着改进程将不会继续运行直到被唤醒,然后被添加到系统的进程等待队列中,一个等待打开该文件的队列中。然后,该函数调用系统调度器去切换到另一个不同的但有CPU运算请求的进程。</P
><P
>当一个进程处理完该文件并且关闭了该文件, <TT 
CLASS="FUNCTION" 
>module_close</TT 
>  
    酒杯调用执行了。该函数唤醒所有在等待队列中的进程(还没有只唤醒特定进程的机制)。然后该函数返回,那个刚刚关闭文件的进程得以继续运行。及时的,进程调度器会判定该进程执行已执行完毕,将CPU转让给别的进程。被提供CPU使用权的那个进程就恰好从先前系统调用 
    <TT
CLASS="FUNCTION"
>module_interruptible_sleep_on</TT
><A
NAME="AEN1056"
HREF="#FTN.AEN1056"
><SPAN
CLASS="footnote"
>[2]</SPAN
></A
><SPAN
CLASS="footnote"
> 
    后的地方开始继续执行。它可以设置一个全局变量去通知别的进程该文件已被打开占用了。当别的请求该文件的进程获得CPU时间片时,它们将检测该变量然后返回休眠。</SPAN
></P
><P
>更有趣的是, <TT 
CLASS="FUNCTION" 
>module_close</TT 
>  
    并不垄断唤醒等待中的请求文件的进程的权力。一个信号,像 
    <B
CLASS="KEYCAP"
>Ctrl</B
>+<B
CLASS="KEYCAP"
>c</B
> (<TT 
CLASS="PARAMETER" 
><I 
>SIGINT</I 
></TT 
>) 也能够唤醒别的进程<A
NAME="AEN1077"
HREF="#FTN.AEN1077"
><SPAN
CLASS="footnote"
>[3]</SPAN
></A
>  。在这种情况下,我们想立即返回 <TT
CLASS="PARAMETER"
><I
>-EINTR</I
></TT
>   
    。这对用户很重要,举个例子来说,用户可以在某个进程接受到文件前终止该进程。</P
><P
>还有一点值得注意。有些时候进程并不愿意休眠,它们要么立即执行它们想做的,要么被告知任务无法进行。这样的进程在打开文件时会使用标志 <TT 
CLASS="PARAMETER" 
><I 
>O_NONBLOCK</I 
></TT 
>  
    。在别的进程被阻塞时内核应该做出的响应是返回错误代码 
    <TT
CLASS="PARAMETER"
><I
>-EAGAIN</I
></TT
>  ,像在本例中对该文件的请求的进程。程序 <B
CLASS="COMMAND"
>cat_noblock</B
>,在本章的源代码目录下可以找到,就能够使用标志位&nbsp; <TT
CLASS="PARAMETER"
><I
>O_NONBLOCK </I
></TT
>打开文件。</P
><DIV
CLASS="EXAMPLE"
><A
NAME="AEN1106"
></A
><P
><B
>Example 9-1. sleep.c</B
></P
><TABLE
BORDER="0"
BGCOLOR="#E0E0E0"
WIDTH="100%"
><TR
><TD
><FONT
COLOR="#000000"
><PRE
CLASS="PROGRAMLISTING"
>/*  sleep.c - create a /proc file, and if several processes try to open it at
 *  the same time, put all but one to sleep
 */

#include &lt;linux/kernel.h&gt;                   /* We're doing kernel work */
#include &lt;linux/module.h&gt;                   /* Specifically, a module */

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS
#include &lt;linux/modversions.h&gt;
#endif        

/* Necessary because we use proc fs */
#include &lt;linux/proc_fs.h&gt;

/* For putting processes to sleep and waking them up */
#include &lt;linux/sched.h&gt;
#include &lt;linux/wrapper.h&gt;

/* In 2.2.3 /usr/include/linux/version.h includes a macro for this, but 2.0.35
 * doesn't - so I add it here if necessary.
 */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))
#endif

#if LINUX_VERSION_CODE &gt;= KERNEL_VERSION(2,2,0)
#include &lt;asm/uaccess.h&gt;                    /* for get_user and put_user */
#endif

/* The module's file functions */

/* Here we keep the last message received, to prove that we can process our
 * input
 */
#define MESSAGE_LENGTH 80
static char Message[MESSAGE_LENGTH];

/* Since we use the file operations struct, we can't use the special proc
 * output provisions - we have to use a standard read function, which is this
 * function
 */
#if LINUX_VERSION_CODE &gt;= KERNEL_VERSION(2,2,0)
static ssize_t module_output (
   struct file *file,                      /* The file read */
   char *buf,           /* The buffer to put data to (in the user segment) */
   size_t len,                             /* The length of the buffer */
   loff_t *offset)                         /* Offset in the file - ignore */
#else
static int module_output (
   struct inode *inode,                    /* The inode read */
   struct file *file,                      /* The file read */
   char *buf,           /* The buffer to put data to (in the user segment) */
   int len)                                /* The length of the buffer */
#endif
{
   static int finished = 0;
   int i;
   char message[MESSAGE_LENGTH+30];

   /* Return 0 to signify end of file - that we have nothing more to say at this
    * point.
    */
   if (finished) {
      finished = 0;
      return 0;
   }

   /* If you don't understand this by now, you're hopeless as a kernel
    * programmer.
    */
   sprintf(message, &quot;Last input:%s\n&quot;, Message);
   for (i = 0; i &lt; len &amp;&amp; message[i]; i++) 
      put_user(message[i], buf+i);

   finished = 1;
   return i;                            /* Return the number of bytes &quot;read&quot; */
}

/* This function receives input from the user when the user writes to the /proc
 * file.
 */
#if LINUX_VERSION_CODE &gt;= KERNEL_VERSION(2,2,0)
static ssize_t module_input (
   struct file *file,                     /* The file itself */
   const char *buf,                       /* The buffer with input */
   size_t length,                         /* The buffer's length */
   loff_t *offset)                        /* offset to file - ignore */
#else
static int module_input (
   struct inode *inode,                   /* The file's inode */
   struct file *file,                     /* The file itself */
   const char *buf,                       /* The buffer with the input */
   int length)                            /* The buffer's length */
#endif
{
   int i;

   /* Put the input into Message, where module_output will later be able to use
    * it
    */
   for(i = 0; i &lt; MESSAGE_LENGTH-1 &amp;&amp; i &lt; length; i++)
#if LINUX_VERSION_CODE &gt;= KERNEL_VERSION(2,2,0)
      get_user(Message[i], buf+i);
#else
      Message[i] = get_user(buf+i);
#endif
   /* we want a standard, zero terminated string */
   Message[i] = '\0';  
  
   /* We need to return the number of input characters used */
   return i;
}

/* 1 if the file is currently open by somebody */
int Already_Open = 0;

/* Queue of processes who want our file */
static struct wait_queue *WaitQ = NULL;

/* Called when the /proc file is opened */
static int module_open(struct inode *inode, struct file *file)
{
   /* If the file's flags include O_NONBLOCK, it means the process doesn't want
    * to wait for the file.  In this case, if the file is already open, we
    * should fail with -EAGAIN, meaning &quot;you'll have to try again&quot;, instead of
    * blocking a process which would rather stay awake.
    */
   if ((file-&gt;f_flags &amp; O_NONBLOCK) &amp;&amp; Already_Open) 
      return -EAGAIN;

	 /* This is the correct place for MOD_INC_USE_COUNT because if a process is
    * in the loop, which is within the kernel module, the kernel module must
    * not be removed.
    */
   MOD_INC_USE_COUNT;

   /* If the file is already open, wait until it isn't */
   while (Already_Open) 
   {
#if LINUX_VERSION_CODE &gt;= KERNEL_VERSION(2,2,0)
      int i, is_sig = 0;
#endif

      /* This function puts the current process, including any system calls,
       * such as us, to sleep.  Execution will be resumed right after the
       * function call, either because somebody called wake_up(&amp;WaitQ) (only
       * module_close does that, when the file is closed) or when a signal,
       * such as Ctrl-C, is sent to the process
       */
      module_interruptible_sleep_on(&amp;WaitQ);
 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -