📄 gk_all.m
字号:
function [U, dist] = gk_all(nclass,data,phi,centroid, W)
% allocation of fuzzy k means Gustafson-Kessel algorithm
% [U, dist] = gk_fkm(nclass,data,U,phi,centroid,W)
% input
% nclass = number of class
% data = data matrix data(ndata,ndim)
% U = initial membership matrix U(ndata,nclass)
% phi = fuzzy exponent >1
% W = distance norm matrix W(nclass,ndim,ndim)
% centroid = centroid
%
% output:
% U = new membership matrix
% dist = distance matrix dist(ndata,nclass)
ndata = size(data, 1); % number of data
ndim = size(data, 2); % number of dimension
dist=zeros(ndata,nclass);
% calculate distance between data & centroid
dist = GKdist(data, centroid, W);
% calculate membership matrix
tmp = dist.^(-1/(phi-1));
t1=sum(tmp')';
t2=t1(:,ones(nclass,1));
U = tmp./t2;
dist=sqrt(dist);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -